2.下列四個(gè)命題中,正確的個(gè)數(shù)是(  )
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x<0”;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”,
③“命題p∨q為真”是“命題p∧q為真”的充分不必要條件;
④在公差為d的等差數(shù)列{an}中,a1=2,a1,a3,a4成等比數(shù)列,則公差d為$-\frac{1}{2}$.
A.0B.1C.2D.3

分析 ①,“>0”的否定是“≤0”;
②,命題的否命題條件和結(jié)論同時(shí)否定;
③,“命題p∨q為真”,則“命題p∧q不一定為真”;
④,a1=2,a1,a3,a4成等比數(shù)列,則公差d為$-\frac{1}{2}$或0.

解答 解:對于①,命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”,故錯(cuò);
對于②,命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”,正確,
對于③,“命題p∨q為真”是“命題p∧q為真”的必要不充分條件,故錯(cuò);
對于④,在公差為d的等差數(shù)列{an}中,a1=2,a1,a3,a4成等比數(shù)列,則公差d為$-\frac{1}{2}$或0,故錯(cuò).
故選:B

點(diǎn)評 本題考查了命題的真假判定,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個(gè)算法的框圖如右圖所示,若該程序輸出的結(jié)果為$\frac{5}{6}$,則判斷框中應(yīng)填入的條件是( 。
A.i<6B.i≤6C.i<5D.i≤7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.冪函數(shù)$f(x)={x^{\frac{1}{5}}}$,若0<x1<x2,則$f({\frac{{{x_1}+{x_2}}}{2}})$,$\frac{{f({x_1})+f({x_2})}}{2}$大小關(guān)系是( 。
A.$f({\frac{{{x_1}+{x_2}}}{2}})<\frac{{f({x_1})+f({x_2})}}{2}$B.$f({\frac{{{x_1}+{x_2}}}{2}})>\frac{{f({x_1})+f({x_2})}}{2}$
C.$f({\frac{{{x_1}+{x_2}}}{2}})=\frac{{f({x_1})+f({x_2})}}{2}$D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若函數(shù)y=f(x)對任意的x,y∈R,恒有f(x+y)=f(x)+f(y).當(dāng)x>0時(shí),恒有f(x)<0
(1)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(2)判斷函數(shù)f(x)的單調(diào)性,并證明你的結(jié)論;
(3)若f(2)=1,解不等式f(-x2)+2f(x)+4≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|x2-2x+3=0},B={x|ax-1=0}.
(1)若A∩B={-1},求實(shí)數(shù)a的值;
(2)若A∩B=B,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在復(fù)平面內(nèi),設(shè)z=1+i(i是虛數(shù)單位),則$|\frac{2}{z}-z|$=( 。
A.0B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)f(x)=|lg|x||,若a<b<0,且f(a)=f(b),則a2+b2的取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a=20.3,b=20.1,c=0.21.3,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ln(x+1)+$\frac{ax}{x+1}$(a∈R)
(1)當(dāng)a=1時(shí),求f(x)在x=0處的切線方程;
(2)當(dāng)a<0時(shí),求f(x)的極值;
(3)求證:ln(n+1)>$\frac{1}{{2}^{2}}$+$\frac{2}{{2}^{2}}$+…+$\frac{n-1}{{n}^{2}}$(n∈N+

查看答案和解析>>

同步練習(xí)冊答案