11.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≤x-1}\\{x≤3}\\{x+y≥2}\end{array}\right.$,則$\frac{y}{x}$的取值范圍是[$-\frac{1}{3}$,$\frac{2}{3}$].

分析 由約束條件作出可行域,再由$\frac{y}{x}$的幾何意義,即可行域內(nèi)的動(dòng)點(diǎn)與定點(diǎn)O(0,0)連線的斜率求解.

解答 解:由約束條件$\left\{\begin{array}{l}{y≤x-1}\\{x≤3}\\{x+y≥2}\end{array}\right.$作出可行域如圖,

$\frac{y}{x}$的幾何意義為可行域內(nèi)的動(dòng)點(diǎn)與定點(diǎn)O(0,0)連線的斜率,
聯(lián)立方程組求得A(3,-1),B(3,2),
又${k}_{OA}=-\frac{1}{3}$,${k}_{OB}=\frac{2}{3}$.
∴$\frac{y}{x}$的取值范圍是[$-\frac{1}{3}$,$\frac{2}{3}$].
故答案為:[$-\frac{1}{3}$,$\frac{2}{3}$].

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知菱形ABCD與直角梯形ABEF所在的平面互相垂直,其中BE∥AF,∠EBA=90°,AB=BE=$\frac{1}{2}$AF=2,∠CBA=$\frac{π}{3}$,P為DF的中點(diǎn).
(1)求證:PE∥平面ABCD
(2)設(shè)G為線段AD上一點(diǎn),$\overrightarrow{AG}$=λ$\overrightarrow{AD}$,若直線FG與平面ABEF所成角的正弦值為$\frac{\sqrt{39}}{26}$,求AG的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在正三棱柱ABC-A1B1C1中,點(diǎn)D是AB的上一點(diǎn),且AD=tAB.
(1)當(dāng)t=$\frac{1}{2}$時(shí),求證:BC1∥平面A1CD;
(2)若AB=AA1,且t=$\frac{1}{3}$,求平面A1CD與平面BB1C1C所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知ω>0,設(shè)x1,x2是方程sin(ωx+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$的兩個(gè)不同的實(shí)數(shù)根,且|x2-x1|的最小值為2,則ω等于( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.為了政府對(duì)過熱的房地產(chǎn)市場(chǎng)進(jìn)行調(diào)控決策,統(tǒng)計(jì)部門對(duì)城市人和農(nóng)村人進(jìn)行了買房心理預(yù)測(cè)調(diào)研,用簡(jiǎn)單隨機(jī)抽樣的方法抽取了110人進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:
買房不買房糾結(jié)
城市人515
農(nóng)村人2010
已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.
(Ⅰ)分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);
(Ⅱ)從參與調(diào)研的城市人中用分層抽樣方法抽取6人,進(jìn)一步統(tǒng)計(jì)城市人的某項(xiàng)收入指標(biāo),假設(shè)一個(gè)買房人的指標(biāo)算作3,一個(gè)糾結(jié)人的指標(biāo)算作2,一個(gè)不買房人的指標(biāo)算作1,現(xiàn)在從這6人中再隨機(jī)選取3人,令X=再抽取3人指標(biāo)之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.i是虛數(shù)單位,復(fù)數(shù)z=$\frac{3i}{1+i}$的虛部是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某機(jī)械廠組裝A,B兩種類型機(jī)械,每組裝1臺(tái)A或B所需要的配件材料費(fèi)和工人數(shù)如下表所示.
類型
條件
AB
配件材料費(fèi)(萬元)205
工人數(shù)(人)48
已知該機(jī)械廠現(xiàn)有工人32人,可用資金55萬元,組裝1臺(tái)A類型機(jī)械可獲純利潤(rùn)4萬元,組裝1臺(tái)B類型機(jī)械可獲純利潤(rùn)2萬元,設(shè)該機(jī)械廠計(jì)劃組裝A,B兩種類型機(jī)械分別為x臺(tái),y臺(tái).
(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問該機(jī)械廠分別組裝A,B兩種類型機(jī)械各多少臺(tái),才能獲得最大利潤(rùn)?并求出此最大純利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為豐富學(xué)生的課外生活,學(xué)校組織學(xué)生代表參加電視臺(tái)的公益助演活動(dòng),初中部推選了6名代表,其中男生代表2名,高中部推選了4名代表,其中男生代表2名,現(xiàn)從這10名學(xué)生中隨機(jī)選出2名男生和1名女生為壓軸節(jié)目助演.
(Ⅰ)設(shè)事件A為“在選出的3名代表中,2名男生都來自初中部”,求事件A發(fā)生的概率;
(Ⅱ)設(shè)X為選出的3名代表中高中部男生的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,若(b-$\frac{6}{5}$c)sinB+csinC=asinA,則sinA=( 。
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案