【題目】已知函數(shù)f(x)=lnx+ln(2﹣x),則(
A.y=f(x)的圖象關(guān)于點(diǎn)(1,0)對稱
B.f(x)在(0,2)單調(diào)遞減
C.y=f(x)的圖象關(guān)于直線x=1對稱
D.f(x)在(0,2)單調(diào)遞增

【答案】C
【解析】解:f(x)的定義域?yàn)椋?,2),

f(x)=ln(2x﹣x2),

令y=2x﹣x2=﹣(x﹣1)2+1,則y=2x﹣x2關(guān)于直線x=1對稱,

∴y=f(x)的圖象關(guān)于直線x=1對稱,故A錯誤,C正確;

∴y=f(x)在(0,1)和(1,2)上單調(diào)性相反,故B,D錯誤;

故選C.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的圖象(函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對對應(yīng)值,他的橫坐標(biāo)x表示自變量的某個值,縱坐標(biāo)y表示與它對應(yīng)的函數(shù)值).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,A={x|x2﹣2x<0},B={x|x≥1},則A∪(UB)=(
A.(0,+∞)
B.(﹣∞,1)
C.(﹣∞,2)
D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{ an}的前n項(xiàng)和為Sn , 且滿足:a1=1,a2=2,Sn+1=an+2﹣an+1(n∈N*),則Sn=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)是偶函數(shù),且在(0,+∞)上單調(diào)遞增的是(
A.y=x3
B.y=lgx
C.y=|x|
D.y=1﹣x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|a+1≤x≤2a+3},B={x|﹣x2+7x﹣10≥0}
(1)已知a=3,求集合(RA)∩B;
(2)若AB,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次英語考試中,考試的成績服從正態(tài)分布(100,36),那么考試成績在區(qū)間(88,112]內(nèi)的概率是(
A.0.6826
B.0.3174
C.0.9544
D.0.9974

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(﹣∞,0)∪(0,+∞)的奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式f(x)<0的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a>0且a≠1,則函數(shù)y=loga(x+1)的圖象一定過點(diǎn)( )
A.(1,1)
B.(1,0)
C.(﹣1,0)
D.(0,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域在R上的函數(shù)f(x)=|x+1|+|x﹣2|的最小值為a.
(1)求a的值;
(2)若p,q,r為正實(shí)數(shù),且p+q+r=a,求證:p2+q2+r2≥3.

查看答案和解析>>

同步練習(xí)冊答案