18.一個幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為(  )
A.$\frac{{41\sqrt{41}}}{48}π$B.$\frac{41}{4}π$C.D.$\frac{4π}{3}$

分析 由三視圖知該幾何體為四棱錐側(cè)面為左視圖,PE⊥平面ABC,E、F分別是對應(yīng)邊的中點,底面ABCD是邊長是2的正方形,設(shè)外接球的球心到平面ABCD的距離為h,則h2+2=1+(2-h)2,求出h,并求出球的半徑,利用球的表面積公式求解.

解答 解:由三視圖知該幾何體為四棱錐側(cè)面為左視圖,
PE⊥平面ABC,E、F分別是對應(yīng)邊的中點,
底面ABCD是邊長是2的正方形,
設(shè)外接球的球心到平面ABCD的距離為h,
則h2+2=1+(2-h)2,
∴h=$\frac{3}{4}$,R2=$\frac{41}{16}$,
∴幾何體的外接球的表面積S=4πR2=$\frac{41}{4}$π,
故選B.

點評 本題考查三視圖求幾何體外接球的表面積,由三視圖正確復(fù)原幾何體以及正確確定外接球球心的位置是解題的關(guān)鍵,考查空間想象能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.甲、乙、丙三人按下面的規(guī)則進行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進行到其中一人連勝兩局或打滿6局時停止.設(shè)在每局中參賽者勝負的概率均為$\frac{1}{2}$,且各局勝負相互獨立.求:
(1)打滿4局比賽還未停止的概率;
(2)比賽停止時已打局數(shù)ξ的分布列與期望E(ξ).令A(yù)k,Bk,Ck分別表示甲、乙、丙在第k局中獲勝.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知四棱錐P-ABCD的外接球為球O,底面ABCD是矩形,面PAD⊥底面ABCD,且PA=PD=AD=2,AB=4,則球O的表面積為$\frac{64}{3}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),A,B是圓(x+c)2+y2=4c2與C位于x軸上方的兩個交點,且F1A∥F2B,則雙曲線C的離心率為( 。
A.$\frac{{2+\sqrt{7}}}{3}$B.$\frac{{4+\sqrt{7}}}{3}$C.$\frac{{3+\sqrt{17}}}{4}$D.$\frac{{5+\sqrt{17}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.直角坐標系中曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=4cosθ\\ y=3sinθ\end{array}\right.$(θ為參數(shù)).
(1)求曲線C的直角坐標方程;
(2)經(jīng)過點M(0,1)作直線l交曲線C于A,B兩點(A在B上方),且滿足|BM|=2|AM|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知A={x|x2-2mx+m2-1<0}.
(1)若m=2,求A;
(2)已知1∈A,且3∉A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在等比數(shù)列{an}中,若a1,a9是方程2x2-5x+2=0的兩根,則a4•a6等于(  )
A.5B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(0,+∞)上單調(diào)遞減,若實數(shù)a滿足f(log2$\frac{1}{a}$)<f(-$\frac{1}{2}$),則a的取值范圍是(0,$\frac{\sqrt{2}}{2}$)∪($\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在平面直角坐標系xOy中,橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F(1,0),離心率為$\frac{{\sqrt{2}}}{2}$.分別過O,F(xiàn)的兩條弦AB,CD相交于點E(異于A,C兩點),且OE=EF=1.
(1)求橢圓的方程;
(2)求證:直線AC,BD的斜率之和為定值.

查看答案和解析>>

同步練習冊答案