A. | $\frac{{2+\sqrt{7}}}{3}$ | B. | $\frac{{4+\sqrt{7}}}{3}$ | C. | $\frac{{3+\sqrt{17}}}{4}$ | D. | $\frac{{5+\sqrt{17}}}{4}$ |
分析 連接BF1,AF2,由雙曲線的定義,可得|AF2|=2a+2c,|BF2|=2c-2a,在△AF1F2中,和△BF1F2中,運(yùn)用余弦定理求得cos∠AF1F2,os∠BF2F1,由F1A∥F2B,可得∠BF2F1+∠AF1F2=π,即有cos∠BF2F1+cos∠AF1F2=0,化簡(jiǎn)整理,由離心率公式計(jì)算即可得到所求值.
解答 解:連接BF1,AF2,
由雙曲線的定義,可得|AF2|-|AF1|=2a,
|BF1|-|BF2|=2a,
由|BF1|=|AF1|=2c,
可得|AF2|=2a+2c,|BF2|=2c-2a,
在△AF1F2中,可得cos∠AF1F2=$\frac{4{c}^{2}+4{c}^{2}-(2a+2c)^{2}}{2•2c•2c}$=$\frac{{c}^{2}-2ac-{a}^{2}}{2{c}^{2}}$,
在△BF1F2中,可得cos∠BF2F1=$\frac{4{c}^{2}+(2c-2a)^{2}-4{c}^{2}}{2•2c•(2c-2a)}$=$\frac{c-a}{2c}$,
由F1A∥F2B,可得∠BF2F1+∠AF1F2=π,即有cos∠BF2F1+cos∠AF1F2=0,
可得$\frac{{c}^{2}-2ac-{a}^{2}}{2{c}^{2}}$+$\frac{c-a}{2c}$=0,
化為2c2-3ac-a2=0,
得2e2-3e-1=0,解得e=$\frac{3+\sqrt{17}}{4}$(負(fù)的舍去),
故選:C.
點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用雙曲線的定義和三角形的余弦定理,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{41\sqrt{41}}}{48}π$ | B. | $\frac{41}{4}π$ | C. | 4π | D. | $\frac{4π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=2x-$\frac{1}{{2}^{x}}$ | B. | y=xsinx | C. | y=excosx | D. | y=x2+sinx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計(jì) | 30 | 20 | 50 |
P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com