6.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),A,B是圓(x+c)2+y2=4c2與C位于x軸上方的兩個(gè)交點(diǎn),且F1A∥F2B,則雙曲線C的離心率為(  )
A.$\frac{{2+\sqrt{7}}}{3}$B.$\frac{{4+\sqrt{7}}}{3}$C.$\frac{{3+\sqrt{17}}}{4}$D.$\frac{{5+\sqrt{17}}}{4}$

分析 連接BF1,AF2,由雙曲線的定義,可得|AF2|=2a+2c,|BF2|=2c-2a,在△AF1F2中,和△BF1F2中,運(yùn)用余弦定理求得cos∠AF1F2,os∠BF2F1,由F1A∥F2B,可得∠BF2F1+∠AF1F2=π,即有cos∠BF2F1+cos∠AF1F2=0,化簡(jiǎn)整理,由離心率公式計(jì)算即可得到所求值.

解答 解:連接BF1,AF2,
由雙曲線的定義,可得|AF2|-|AF1|=2a,
|BF1|-|BF2|=2a,
由|BF1|=|AF1|=2c,
可得|AF2|=2a+2c,|BF2|=2c-2a,
在△AF1F2中,可得cos∠AF1F2=$\frac{4{c}^{2}+4{c}^{2}-(2a+2c)^{2}}{2•2c•2c}$=$\frac{{c}^{2}-2ac-{a}^{2}}{2{c}^{2}}$,
在△BF1F2中,可得cos∠BF2F1=$\frac{4{c}^{2}+(2c-2a)^{2}-4{c}^{2}}{2•2c•(2c-2a)}$=$\frac{c-a}{2c}$,
由F1A∥F2B,可得∠BF2F1+∠AF1F2=π,即有cos∠BF2F1+cos∠AF1F2=0,
可得$\frac{{c}^{2}-2ac-{a}^{2}}{2{c}^{2}}$+$\frac{c-a}{2c}$=0,
化為2c2-3ac-a2=0,
得2e2-3e-1=0,解得e=$\frac{3+\sqrt{17}}{4}$(負(fù)的舍去),
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用雙曲線的定義和三角形的余弦定理,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列4個(gè)命題中正確命題的個(gè)數(shù)是
(1)對(duì)于命題p:?x0∈R,使得x02-1≤0,則¬p:?x∈R都有x2-1>0
(2)已知X~N(2,σ2),P(x>2)=0.5
(3)已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為$\stackrel{∧}{y}$=2x-3
(4)“x≥1”是“x+$\frac{1}{x}$≥2”的充分不必要條件.( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在數(shù)列{an}中,已知a1+a2+…+an=2n-1,則a12+a22+…+an2=$\frac{1}{3}$(4n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.班主任為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從全班25位女同學(xué),15位男同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析.
(Ⅰ)如果按性別比例分層抽樣,求樣本中男生、女生人數(shù)分別是多少;
(Ⅱ)隨機(jī)抽取8位同學(xué),數(shù)學(xué)成績(jī)由低到高依次為:60,65,70,75,80,85,90,95;
物理成績(jī)由低到高依次為:72,77,80,84,88,90,93,95,若規(guī)定90分(含90分)以上為優(yōu)秀,記ξ為這8位同學(xué)中數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)$f(x)=\frac{(4x+a)lnx}{3x+1}$,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)若對(duì)于任意的x∈[1,e],f(x)≤mx恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.?dāng)?shù)列{an}滿足${a_1}>\frac{3}{2}$,${a_{n+1}}={a_n}^2-{a_n}+1$,且$\sum_{i=1}^{2017}{\frac{1}{a_i}}=2$,則4a2018-a1的最大值為-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.一個(gè)幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為(  )
A.$\frac{{41\sqrt{41}}}{48}π$B.$\frac{41}{4}π$C.D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列函數(shù)中,偶函數(shù)是(  )
A.y=2x-$\frac{1}{{2}^{x}}$B.y=xsinxC.y=excosxD.y=x2+sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.心理學(xué)家發(fā)現(xiàn)視覺(jué)和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30名女20名),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答,選題情況如表:(單位:人)
幾何題代數(shù)題總計(jì)
男同學(xué)22830
女同學(xué)81220
總計(jì)302050
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺(jué)和空間能力與性別有關(guān)?
(2)經(jīng)過(guò)多次測(cè)試后,女生甲每次解答一道幾何題所用的時(shí)間在5-7分鐘,女生乙每次解答一道幾何題所用的時(shí)間在6-8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(3)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩名女生被抽到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
附表及公式
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案