16.若函數(shù)y=sinωx能夠在某個長度為1的閉區(qū)間上至少兩次獲得最大值1,且在區(qū)間$[-\frac{π}{16},\frac{π}{15}]$上為增函數(shù),則正整數(shù)ω的值為8.

分析 根據(jù)正弦函數(shù)y=sinωx可知圖象過(0,0),求出周期T,根據(jù)長度為1的閉區(qū)間上至少兩次獲得最大值1,建立關(guān)系,在結(jié)合在區(qū)間$[-\frac{π}{16},\frac{π}{15}]$上為增函數(shù),可得正整數(shù)ω的值.

解答 解:由題意函數(shù)y=sinωx圖象過(0,0),
其周期T=$\frac{2π}{ω}$,
要使長度為1的閉區(qū)間上至少兩次獲得最大值1,則有T$+\frac{1}{4}T≤1$,即$\frac{2π}{ω}+\frac{π}{2ω}≤1$,
解得:ω$≥\frac{5π}{2}$,
∵在區(qū)間$[-\frac{π}{16},\frac{π}{15}]$上為增函數(shù),
∴$2kπ-\frac{π}{2}≤-\frac{πω}{16}$且$2kπ+\frac{π}{2}≥\frac{ωπ}{15}$,k∈Z,
解得:8-32k≥ω且30k+7.5≤ω,
當(dāng)k=0時,可同時滿足,此時ω正整數(shù)值為8.
故答案為8.

點評 本題考查三角函數(shù)的圖象及性質(zhì)的綜合運用能力,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,ccosA+$\sqrt{3}$csinA-b-a=0.
(Ⅰ)求C;
(Ⅱ)若c=1,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.集合A={x|-1≤x≤2},B={x|x<1},則A∩∁RB=( 。
A.{x|x<1}B.{x|-1≤x<1}C.{x|-1≤x≤1}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若點A的坐標(biāo)是(4,2),F(xiàn)是拋物線y2=2x的焦點,點P在拋物線上移動,為使得|PA|+|PF|取得最小值,則P點的坐標(biāo)是( 。
A.(1,2)B.(2,1)C.(2,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)m,n,t都是正數(shù),則$m+\frac{4}{n},n+\frac{4}{t},t+\frac{4}{m}$三個數(shù)( 。
A.都大于4B.都小于4
C.至少有一個大于4D.至少有一個不小于4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)有四個命題,其中真命題的個數(shù)是( 。
①有兩個平面互相平行,其余各面都是四邊形的多面體一定是棱柱;
②有一個面是多邊形,其余各面都是三角形的多面體一定是棱錐;
③用一個面去截棱錐,底面與截面之間的部分叫棱臺;
④側(cè)面都是長方形的棱柱叫長方體.
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某租賃公司擁有汽車100輛.當(dāng)每輛車的月租金為3 00元時,可全部租出.當(dāng)每輛車的月租金每增加5元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費15,未租出的車每輛每月需要維護費5元.
(1)當(dāng)每輛車的月租金定為360元時,能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某輛汽車以x千米/小時的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求60≤x≤120)時,每小時的油耗(所需要的汽油量)為$\frac{1}{5}({x-k+\frac{4500}{x}})$升,其中k為常數(shù),且60≤k≤100.
(1)若汽車以120千米/小時的速度行駛時,每小時的油耗為11.5升,欲使每小時的油耗不超過9升,求x的取值范圍;
(2)求該汽車行駛100千米的油耗的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“2x>2”是“(x-2)(x-4)<0”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案