1.下列函數(shù)中,既不是奇函數(shù)又不是偶函數(shù)的是(  )
A.y=x2+|x|B.y=2x-2-xC.y=x2-3xD.y=$\frac{1}{x+1}$+$\frac{1}{x-1}$

分析 根據(jù)奇函數(shù)和偶函數(shù)的定義便可判斷這幾個函數(shù)的奇偶性,從而找出正確選項.

解答 解:A是偶函數(shù),B是奇函數(shù);
C:x=-1時,y=$\frac{2}{3}$,x=1時,y=-2;
∴該函數(shù)為非奇非偶函數(shù).
故選C.

點評 考查奇函數(shù)和偶函數(shù)的定義,以及判斷方法,非奇非偶函數(shù)的定義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知定點F1(-2,0)與F2(2,0),動點M滿足|MF1|-|MF2|=4,則點M的軌跡方程是( 。
A.$\frac{x^2}{16}-\frac{y^2}{12}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=0(x≥2)$C.y=0(|x|≥2)D.y=0(x≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若角α的終邊經(jīng)過點P(4,-3),則sinα=( 。
A.±$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.±$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的漸近線方程為(  )
A.y=±$\frac{3}{4}$xB.y=±$\frac{4}{3}$xC.y=±$\frac{3}{5}$xD.y=±$\frac{5}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.?dāng)?shù)列{an}的通項公式為an=$\frac{1}{n(n+1)}$,若其前n項和Sn=$\frac{9}{10}$,則拋物線y2=4nx的準(zhǔn)線方程為x=-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知動點P(x,y)到定點(1,1)的距離與到定直線x+y+2=0的距離的比值為$\frac{\sqrt{2}}{2}$,則動點P的軌跡是雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.利用獨立性檢驗考察兩個分類變量X與Y是否有關(guān)系時,若K2的觀測值k=6.132,則有97.5%的把握認(rèn)為“X與Y有關(guān)系”.
P(K2≥k00.050.0250.0100.005
k03.8415.0246.6357.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的左右焦點分別為F1,F(xiàn)2,P是雙曲線上的點,且∠F1PF2=90°,則△F1PF2的面積S=(  )
A.12B.16C.20D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx-ax(a∈R).
(1)函數(shù)f(x)在[2,3]上單調(diào)遞減,求a的取值范圍;
(2)當(dāng)a>0時,求函數(shù)f(x)在[1,2]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案