9.利用獨(dú)立性檢驗(yàn)考察兩個(gè)分類變量X與Y是否有關(guān)系時(shí),若K2的觀測(cè)值k=6.132,則有97.5%的把握認(rèn)為“X與Y有關(guān)系”.
P(K2≥k00.050.0250.0100.005
k03.8415.0246.6357.879

分析 根據(jù)K2的觀測(cè)值與臨界值的關(guān)系,即可得出概率結(jié)論.

解答 解:∵K2的觀測(cè)值k=6.132>5.024,且k=6.132<6.635,
對(duì)照臨界值表得,有97.5%的把握認(rèn)為“X與Y有關(guān)系”.
故答案為:97.5%.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線l:ax+y+b=0與圓O:x2+y2=4相交于A、B兩點(diǎn),$M({\sqrt{3},-1})$,且$\overrightarrow{OA}+\overrightarrow{OB}=\frac{2}{3}\overrightarrow{OM}$,則$\sqrt{3}ab$等于( 。
A.-3B.-4C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)數(shù)列{an}滿足:a1=2,an+1=1-$\frac{1}{{a}_{n}}$,記數(shù)列{an}的前n項(xiàng)之積為T,則T2017的值為( 。
A.-$\frac{1}{2}$B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,既不是奇函數(shù)又不是偶函數(shù)的是( 。
A.y=x2+|x|B.y=2x-2-xC.y=x2-3xD.y=$\frac{1}{x+1}$+$\frac{1}{x-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)AB是⊙O1:x2+(y+2)2=1任一直徑,求$\overrightarrow{OA}•\overrightarrow{OB}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.從某小學(xué)隨機(jī)抽取200名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).
(1)求a的值;
(2)估計(jì)這所小學(xué)學(xué)生身高的眾數(shù)、中位數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知點(diǎn)(x,y)是不等式組$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{ax+by+c≥0}\end{array}\right.$表示的平面區(qū)域內(nèi)的一個(gè)動(dòng)點(diǎn),且目標(biāo)函數(shù)z=2x+y的最大值為7,最小值為1,則$\frac{a-b+c}{a}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在三棱柱ABC-A1B1C1中,D為AB的中點(diǎn),CD⊥DA1,AC⊥BC,∠ABB1=45°,AC=BC=BB1=2.
(1)證明:B1D⊥BD;
(2)求點(diǎn)A到平面A1CD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,底面ABCD是一個(gè)梯形,且AB∥DC,△PAD是等邊三角形,已知AD=4,BD=4$\sqrt{3}$,AD=2CD=8.
(1)設(shè)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD;
(2)求四棱錐P-ABCD的體積;
(3)當(dāng)M點(diǎn)位于線段PC什么位置時(shí),PA∥平面MBD?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案