已知函數(shù)
(1)若的極值點,求實數(shù)的值;
(2)當時,方程有實根,求實數(shù)的最大值。

(1) (2) 當時,取得最大值0.

解析試題分析:(1). 1分
因為的極值點,所以. 2分
,解得.     3分
又當時,,從而的極值點成立. 4分
(2)若時,方程可化為,
問題轉化為上有解,
即求函數(shù)的值域.             7分
以下給出兩種求函數(shù)值域的方法:
方法1:因為,令,
   ,             9分
所以當,從而上為增函數(shù),
,從而上為減函數(shù),            10分
因此
,故
因此當時,取得最大值0.           12分
方法2:因為,所以
,則
時,,所以上單調遞增;
時,,所以上單調遞減;
因為,故必有,又
因此必存在實數(shù)使得,
,所以上單調遞減;
,所以上單調遞增;
上單調遞減;
又因為,
,則,又
因此當時,取得最大值0.  12分
考點:導數(shù)的運用
點評:主要是考查了運用導數(shù)來判定函數(shù)單調性以及函數(shù)的 極值問題,通過利用函數(shù)的單調性放縮法來證明不等式,進而得到最值,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的最大值;
(Ⅱ)若對任意,不等式恒成立,求實數(shù)的取值范圍;
(Ⅲ)若,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)在區(qū)間上是增函數(shù),在區(qū)間,上是減函數(shù),又
(1)求的解析式;
(2)若在區(qū)間上恒有成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

題文已知函數(shù).
(1)求函數(shù)的單調遞減區(qū)間;
(2)若不等式對一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調區(qū)間;
(Ⅱ)若,且對于任意,恒成立,試確定實數(shù)的取值范圍;
(Ⅲ)設函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)其中
(1)若=0,求的單調區(qū)間;
(2)設表示兩個數(shù)中的最大值,求證:當0≤x≤1時,||≤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),且
(1)若函數(shù)處的切線與軸垂直,求的極值。
(2)若函數(shù),求實數(shù)a的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

文科設函數(shù)。(Ⅰ)若函數(shù)處與直線相切,①求實數(shù),b的值;②求函數(shù)上的最大值;(Ⅱ)當時,若不等式對所有的都成立,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

其中,曲線在點處的切線垂直于軸.
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的極值.

查看答案和解析>>

同步練習冊答案