1.設(shè)定義在[-2,2]上的偶函數(shù)f(x)在區(qū)間[-2,0]上單調(diào)遞減,若f(1-m)<f(m),求實(shí)數(shù)m的取值范圍.

分析 根據(jù)函數(shù)的奇偶性和單調(diào)性之間的關(guān)系將不等式f(1-m)<f(m)轉(zhuǎn)化為f(|1-m|)<f(|m|),然后解不等式即可.

解答 解:由偶函數(shù)性質(zhì)知f(x)在[0,2]上單調(diào)遞增,且f(1-m)=f(|1-m|),f(m)=f(|m|),
因此f(1-m)<f(m)等價(jià)于$\left\{\begin{array}{l}{-2≤1-m≤2}\\{-2≤m≤2}\\{|1-m|<|m|}\end{array}\right.$,
解得:$\frac{1}{2}$<m≤2.
因此實(shí)數(shù)m的取值范圍是($\frac{1}{2}$,2].

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性和單調(diào)性的應(yīng)用,根據(jù)函數(shù)奇偶性的性質(zhì)將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知y=f(x)是定義在[-1,1]上的偶函數(shù),與g(x)圖象關(guān)于x=1對(duì)稱,當(dāng)x∈[2,3]時(shí),g(x)=2a(x-2)-3(x-2)2,a為常數(shù),若f(x)的最大值為12,則a=( 。
A.3B.6C.6或$\frac{15}{2}$D.$\frac{15}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,F(xiàn)1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{24}}$=1(a>0,b>0)的左、右焦點(diǎn),過F1的直線l與雙曲線的左右兩支分別交于點(diǎn)B,A兩點(diǎn).若△ABF2為等邊三角形,則△BF1F2的面積為( 。
A.8B.8$\sqrt{2}$C.8$\sqrt{3}$D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一元二次方程x2+(2k-1)x+k2=0兩個(gè)根均大于1的充分必要條件是( 。
A.k<-2B.k<-3C.k<0D.k>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若a2+11b2=2$\sqrt{3}$ab,且sinC=2$\sqrt{3}$sinB.
(1)求角B的大;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=tanB,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合U={x|x>0},∁UA={x|0<x<3},那么集合A=( 。
A.{x|x>3}B.{x|x≥3}C.{x|x<0或x>3}D.{x|x≤0或x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,有下列四個(gè)命題:
①若m⊥α,m⊥β,則α∥β;
②若α∥γ,β∥γ,則α∥β;
③若m?α,n?β,m∥n,則α∥β;
④若m,n是異面直線,m?α,n?β,n∥α,m∥β,則α∥β.
其中正確的命題有①②④.(填寫所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=sinx+acosx的圖象關(guān)于x=$\frac{π}{3}$對(duì)稱,則函數(shù)y=asinx+cosx的圖象的一條對(duì)稱軸是( 。
A.x=$\frac{5π}{6}$B.x=$\frac{2π}{3}$C.x=$\frac{π}{3}$D.x=$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知?jiǎng)狱c(diǎn)M(x,y)到點(diǎn)E(1,0)的距離是它到點(diǎn)F(4,0)的距離的一半.
(I)求動(dòng)點(diǎn)M的軌跡方程;
(II)已知點(diǎn)A,C,B,D是點(diǎn)M軌跡上的四個(gè)點(diǎn),且AC,BD互相垂直,垂足為M(1,1),求四邊形ABCD面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案