9.在正方體ABCD-A1B1C1D1中,異面直線A1B與AD所成的角大小為$\frac{π}{2}$.

分析 推導(dǎo)出AD⊥平面ABB1A1,從而AD⊥A1B,由此能示出異面直線A1B與AD所成的角大小.

解答 解:在正方體ABCD-A1B1C1D1中,
∵AD⊥平面ABB1A1,A1B?平面ABB1A1
∴AD⊥A1B,
∴異面直線A1B與AD所成的角大小為$\frac{π}{2}$.
故答案為:$\frac{π}{2}$.

點(diǎn)評(píng) 本題考查異面直線所成角的大小的求法,涉及到空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.“中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.“中國剩余定理”講的是一個(gè)關(guān)于整除的問題,現(xiàn)有這樣一個(gè)整除問題:將2至2017這2016個(gè)數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列{an},則此數(shù)列的項(xiàng)數(shù)為134.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知物體的運(yùn)動(dòng)方程為s=$\frac{1}{4}{t^4}-4{t^3}+16{t^2}$(t表示時(shí)間,單位:秒;s表示位移,單位:米),則瞬時(shí)速度為0米每秒的時(shí)刻是( 。
A.0秒、2秒或4秒B.0秒、2秒或16秒C.0秒、4秒或8秒D.2秒、8秒或16秒

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知A、B是兩個(gè)事件,P(B)=$\frac{1}{4}$,P(AB)=$\frac{1}{8}$,P(A|B)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.實(shí)數(shù)x取什么值時(shí),復(fù)數(shù)z=(x2-2x-3)+(x2+3x+2)i(i為虛數(shù)單位);
(1)是實(shí)數(shù)?
(2)對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第二象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若tan(α+$\frac{π}{4}$)=2,則tanα的值等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={f(x)|f(x)+f(x+2)=f(x+1)},$g(x)=sin(\frac{πx}{3})$.
(1)求證:g(x)∈A;
(2)g(x)是周期函數(shù),據(jù)此猜想A中的元素一定是周期函數(shù),判斷該猜想是否正確,并證明你的結(jié)論;
(3)g(x)是奇函數(shù),據(jù)此猜想A中的元素一定是奇函數(shù),判斷該猜想是否正確,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知曲線y=x3在(a,b)處的切線斜率為3,那么a的值是(  )
A.-1B.1C.-1或1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.圖(1)、(2)、(3)、(4)分別包含1個(gè)、5個(gè)、13個(gè)、25個(gè)第二十九屆北京奧運(yùn)會(huì)吉祥物“福娃迎迎”,按同樣的方式構(gòu)造圖形,設(shè)第n個(gè)圖形包含f(n)個(gè)“福娃迎迎”.則f(6)=61.

查看答案和解析>>

同步練習(xí)冊(cè)答案