11.“中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.“中國剩余定理”講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將2至2017這2016個數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列{an},則此數(shù)列的項數(shù)為134.

分析 由能被3除余1且被5除余1的數(shù)就是能被15整除余1的數(shù),運用等差數(shù)列通項公式,以及解不等式即可得到所求項數(shù).

解答 解:由能被3除余1且被5除余1的數(shù)就是能被15整除余1的數(shù),
故an=15n-14.
由an=15n-14≤2017
得n≤135,
∵當(dāng)n=1時,符合要求,但是該數(shù)列是從2開始的,
故此數(shù)列的項數(shù)為135-1=134.
故答案為:134

點評 本題考查數(shù)列模型在實際問題中的應(yīng)用,考查等差數(shù)列的通項公式的運用,考查運算能力,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)變量x,y滿足$\left\{\begin{array}{l}{2x+y-6≥0}\\{x+2y-6≥0}\\{y≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+3y的最小值為( 。
A.6B.10C.12D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2x3+ax與g(x)=bx2+cx圖象都過點P(2,0)且在點P處有公切線,求
(1)f(x)和g(x)的表達式及公切線方程;
(2)若$F(x)=f'(1)lnx+\frac{g(x)}{16}$,求F(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.復(fù)數(shù)z=$\frac{-i}{1+2i}$在復(fù)平面對應(yīng)的點位于第三象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若$sin(\frac{π}{4}+α)=\frac{1}{2}$,則$\frac{{sin(\frac{5π}{4}+α)}}{{cos(\frac{9π}{4}+α)}}•cos(\frac{7π}{4}-α)$的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)$f(x)=4x+\frac{a^2}{x}({x>0\;,\;\;x∈R})$在x=2時取得最小值,則實數(shù)a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.探究函數(shù)$f(x)=2x+\frac{8}{x},x∈(0,+∞)$的最小值,并確定取得最小值時x的值.列表如下:
x0.511.51.71.922.12.22.33457
y16108.348.18.0188.018.048.088.61011.615.14
請觀察表中y值隨x值變化的特點,完成以下的問題.
(1)函數(shù)$f(x)=2x+\frac{8}{x}(x>0)$在區(qū)間(0,2)上遞減;函數(shù)$f(x)=2x+\frac{8}{x}(x>0)$在區(qū)間(2,+∞)上遞增.當(dāng)x=2時,y最小=8.
(2)證明:函數(shù)$f(x)=2x+\frac{8}{x}(x>0)$在區(qū)間(0,2)遞減.
(3)思考:函數(shù)y=2x+$\frac{8}{x}$時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某幾何體的三視圖如圖所示,該幾何體的體積為$\frac{9+\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在正方體ABCD-A1B1C1D1中,異面直線A1B與AD所成的角大小為$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊答案