已知直線及圓
(1) 若直線l與圓C相切,求a的值;
(2) 若直線l與圓C相交于A,B兩點,且弦AB的長為,求a的值.

解:圓方程化為(x-1)2+(y-2)2=4……………………1’
∴圓心(1,2),半徑為2            …………………2’
(1)由題意有=2,解得a=0或a=.  ……………7’     
(2)∵圓心到直線axy+4=0的距離為,……………9’
22=4,解得a=-.        ………………12’

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

自點發(fā)出的光線射到軸上,被軸反射,其反射光線所在直線與圓相切,求光線所在直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設平面直角坐標系中,設二次函數(shù)的圖象與兩坐標軸有三個交點,經(jīng)過這三個交點的圓記為C.求:
(Ⅰ)求實數(shù)b 的取值范圍;
(Ⅱ)求圓C 的方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
設橢圓的左、右焦點分別為,上頂點為,過點垂直的直線交軸負半軸于點,且
(1)求橢圓的離心率;
(2)若過、、三點的圓恰好與直線相切,求橢圓
方程;
(3)在(2)的條件下,過右焦點作斜率為的直線與橢圓交于、
點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,
如果存在,求出的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)如圖所示,已知以點為圓心的圓與直線相切.過點的動直線與圓相交于,兩點,的中點,直線相交于點.

(1)求圓的方程;
(2)當時,求直線的方程.
(3)是否為定值?如果是,求出其定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線C1為參數(shù)),曲線C2(t為參數(shù)).
(1)指出C1,C2各是什么曲線,并說明C1與C2公共點的個數(shù);
(2)若把C1,C2上各點的縱坐標都拉伸為原來的兩倍,分別得到曲線.寫出的參數(shù)方程.公共點的個數(shù)和C公共點的個數(shù)是否相同?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
過點作圓C的切線,切點為D,且QD=4
(1)求的值
(2)設P是圓C上位于第一象限內(nèi)的任意一點,過點P作圓C的切線l,且lx軸于點A,交軸于點B,設,求的最小值(O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(15分)已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個圓.
(1)求實數(shù)m的取值范圍;
(2)求該圓半徑r的取值范圍;
(3)求圓心的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知拋物線的準線與雙曲線交于兩點,點為拋物線的焦點,若為直角三角形,則雙曲線的離心率是(   )

A. B. C.2 D.3 

查看答案和解析>>

同步練習冊答案