20.若某多面體的三視圖如圖所示(單位:cm),則此多面體的體積是$\frac{5}{6}$cm3

分析 根據(jù)三視圖得該幾何體是由棱長為1cm的正方體、沿相鄰三個側(cè)面的對角線截去一個三棱錐得到一個多面體,畫出圖,由正方體的體積和椎體的體積公式求出此多面體的體積即可.

解答 解:根據(jù)三視圖得該幾何體是由棱長為1cm的正方體ABCD-EFGH、
如圖所示:
,
沿相鄰三個側(cè)面的對角線截去一個三棱錐E-AFH得到一個多面體,
此多面體的體積V=1-$\frac{1}{3}$×$\frac{1}{2}$×1×1×1=$\frac{5}{6}$(cm3);
故答案為:$\frac{5}{6}$.

點評 本題考查三視圖求幾何體的體積、由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}+4x,x≤2\\{log_2}x-a,x>2\end{array}\right.$有兩個不同的零點,則實數(shù)a的取值范圍是( 。
A.[-1,0)B.(1,2]C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.以長方形ABCD-A1B1C1D1的棱AB,AD,AA1所在的直線為坐標(biāo)軸建立空間直角坐標(biāo)系,且長方體的棱AB=1,AD=2,AA1=4,則棱CC1中點坐標(biāo)為(  )
A.(1,1,1)B.(1,2,2)C.(1,2,4)D.(1,1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)$f(x)=tan(2x-\frac{π}{6})$的最小正周期是( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=x2+4x,且f(2cosθ-1)=m,則m的最小值是-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在數(shù)列{an}中,若a1=1,an+1=2an+1(n≥1),則數(shù)列的通項an=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=|x+3|+2,g(x)=kx+1,若方程f(x)=g(x)有兩個不相等的實根,則實數(shù)a的取值范圍是( 。
A.(-$\frac{1}{3}$,+∞)B.($\frac{1}{3}$,1)C.(-∞,-$\frac{1}{3}$)D.(-1,-$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.過拋物線y2=4x的焦點F的直線與其交于A,B兩點,|AF|>|BF|,如果|AF|=5,那么|BF|=( 。
A.$\frac{{3\sqrt{5}}}{2}$B.$\frac{5}{4}$C.$\frac{5}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.復(fù)數(shù)z滿足z=(5+2i)2,則z的共軛復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案