8.函數(shù)$f(x)=tan(2x-\frac{π}{6})$的最小正周期是( 。
A.$\frac{π}{2}$B.πC.D.

分析 利用正切函數(shù)的周期個數(shù)求解即可.

解答 解:函數(shù)$f(x)=tan(2x-\frac{π}{6})$的最小正周期是:$\frac{π}{2}$.
故選:A.

點(diǎn)評 本題考查三角函數(shù)的周期公式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.運(yùn)行如圖所示的算法框圖,輸出的結(jié)果是( 。
A.-1B.0C.$\frac{1}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),則∠ABC等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,D為邊BC上一點(diǎn),BC=3BD,若AB=1,AC=2,則AD•BD的最大值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.給出下列結(jié)論:
動點(diǎn)M(x,y)分別到兩定點(diǎn)(-3,0)、(3,0)連線的斜率之乘積為$\frac{16}{9}$,設(shè)M(x,y)的軌跡為曲線C,F(xiàn)1、F2,分別為曲線C的左、右焦點(diǎn),則下列說法中:
(1)曲線C的焦點(diǎn)坐標(biāo)為F1(-5,0)、F2(5,0);
(2)當(dāng)x<0時,△F1MF2的內(nèi)切圓圓心在直線x=-3上;
(3)若∠F1MF2=90°,則${S_{△{F_1}M{F_2}}}$=32;
(4)設(shè)A(6,1),則|MA|+|MF2|的最小值為2$\sqrt{2}$;
其中正確的序號是:①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}-ax-5,(x≤1)\\ \frac{a}{x}(x>1)\end{array}$是R上的增函數(shù),則a的取值范圍是( 。
A.{a|-3≤a<0}B.{a|a≤-2}C.{a|a<0}D.{a|-3≤a≤-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若某多面體的三視圖如圖所示(單位:cm),則此多面體的體積是$\frac{5}{6}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)y=f(x),x∈R是奇函數(shù),其部分圖象如圖所示,則在(-1,0)上與函數(shù)f(x)的單調(diào)性相同的是( 。
A.$y=x+\frac{1}{x}$B.y=log2|x|
C.$y=\left\{{\begin{array}{l}{e^x}&{x≥0}\\{{e^{-x}}}&{x<0}\end{array}}\right.$D.y=cos(2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-2ax+a+2,a∈R.
(1)若方程f(x)=0有兩個小于2的不等實(shí)根,求實(shí)數(shù)a的取值范圍;
(2)若不等式f(x)≥-1-ax對任意x∈R恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)在[0,2]上的最大值為4,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案