18.已知α為第四象限角,則$\frac{α}{2}$所在的象限為(  )
A.第二象限B.第二或第四象限C.第一象限D.第一或第三象限

分析 根據(jù)角α的終邊在第四象限,建立角α滿足的不等式,兩邊除以2再討論整數(shù)k的奇偶性,可得$\frac{α}{2}$的終邊所在的象限.

解答 解:∵角α的終邊在第四象限,
∴2kπ-$\frac{π}{2}$<α<2kπ,k∈Z
∴kπ-$\frac{π}{4}$<$\frac{α}{2}$<kπ,k∈Z
①當(dāng)k為偶數(shù)時,2nπ-$\frac{π}{4}$<$\frac{α}{2}$<2nπ,n∈Z,得$\frac{α}{2}$是第四象限角;
②當(dāng)k為奇數(shù)時,(2n+1)π-$\frac{π}{4}$<$\frac{α}{2}$<(2n+1)π,n∈Z,得是第二象限角;
故選:B.

點(diǎn)評 本題給出角α的終邊在第四象限,求$\frac{α}{2}$的終邊所在的象限,著重考查了象限角、軸線角和終邊相同角的概念,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lgx|,0<x≤10}\\{-\frac{1}{10}x+2,x>10}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是(10,20).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.一個圓錐的底面半徑為2cm,高為6cm,在其中有一個高為xcm的內(nèi)接圓柱.
(1)當(dāng)x為何值時,圓柱側(cè)面積最大?并求出最大值.
(2)設(shè)內(nèi)接圓柱底面圓的直徑為a,母線長為b,圓錐的母線長為c,請設(shè)計一個算法,當(dāng)輸入實(shí)數(shù)a,b,c,要求輸出這三個數(shù)中最大的數(shù),請寫出算法并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=2x3-ax+6的一個單調(diào)遞增區(qū)間為[1,+∞),則減區(qū)間是( 。
A.(-∞,0)B.(-1,1)C.(0,1)D.(-∞,1),(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.雙曲線的兩條漸近線為x±2y=0,則它的離心率為$\sqrt{5}或\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在“心連心”活動中,5名黨員被分配到甲、乙、丙三個村子進(jìn)行入戶走訪,每個村子至少安排1名黨員參加,且A,B兩名黨員必須在同一個村子的不同分配方法的總數(shù)為36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)$f(x)=\frac{{\sqrt{x+4}+\sqrt{1-2x}}}{{{x^2}-1}}$的定義域?yàn)椋ā 。?table class="qanwser">A.$[-4,-1)∪(-1,\frac{1}{2}]$B.[-4,-1)∪(-1,1)C.$[\frac{1}{2},1)∪(1,+∞)$D.[-4,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知點(diǎn)P(2,0),圓C的圓心在直線x-y-5=0上且與y軸切于點(diǎn)M(0,-2).
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點(diǎn),過點(diǎn)P的直線l垂直平分弦AB,這樣的實(shí)數(shù)a是否存在,若存在,求出實(shí)數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知△ABC中,AC=$\sqrt{2}$BC;
(1)若CD是角C的平分線,且CD=kBC,求k的取值范圍;
(2)在(1)的條件下,若S△ABC=1,當(dāng)k為何值時,AB最短?
(3)如果AB=2,求三角形ABC的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案