分析 (1)利用圓C的圓心在直線x-y-5=0上且與y軸切于點M(0,-2),求出圓心與半徑,即可求圓C的標準方程;
(2)利用反證法,先假設滿足題意得點存在,根據(jù)線段垂直平分線的性質得到圓心C必然在直線l上,由點C與點P的坐標求出直線PC的斜率,根據(jù)兩直線垂直時斜率的乘積為-1,求出直線AB的斜率,進而求出實數(shù)a的值,然后由已知直線ax-y+1=0,變形得到y(tǒng)=ax+1,代入(1)中求出的圓C的方程,消去y得到關于x的一元二次方程,根據(jù)直線與圓有兩個交點,得到根的判別式大于0,即可求出a的取值范圍,發(fā)現(xiàn)求出的a的值不在此范圍中,故假設錯誤,則不存在實數(shù)a,使得過點P(2,0)的直線l垂直平分弦AB.
解答 解:(1)∵圓C的圓心在直線x-y-5=0上且與y軸切于點M(0,-2),
∴設圓心坐標為C(a,b),則$\left\{\begin{array}{l}{a-b-5=0}\\{b=-2}\end{array}\right.$,
解得a=3,b=-2,∴圓心C(3,-2),半徑r=|MC|=3,
故圓的標準方程為(x-3)2+(y+2)2=9…(5分)
(2)把直線ax-y+1=0,即y=ax+1.代入圓C的方程,
消去y,整理得(a2+1)x2+6(a-1)x+9=0.
由于直線ax-y-1=0交圓C于A,B兩點,
故△=36(a-1)2-36(a2+1)>0,即-2a>0,解得a<0…(7分)
設符合條件的實數(shù)a存在,
由于l2垂直平分弦AB,故圓心C(3,-2)必在l2上.
所以l2的斜率kPC=-2,而kAB=a=-$\frac{1}{{k}_{PC}}$,所以a=$\frac{1}{2}$,…(9分)
由于$\frac{1}{2}>0$,故滿足題意的實數(shù)a不存在.…(10分)
點評 此題考查了利用待定系數(shù)法求圓的方程,垂直平分線的性質及方程與函數(shù)的綜合.此題第二問利用的方法是反證法,此方法的步驟為:先否定結論,然后利用正確的推理得出與已知,定理及公理矛盾,得到假設錯誤,故原結論成立.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第二象限 | B. | 第二或第四象限 | C. | 第一象限 | D. | 第一或第三象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 單位向量都相等 | B. | 任一向量與它的相反向量不相等 | ||
C. | 平行向量不一定是共線向量 | D. | 模為0的向量與任意向量共線 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com