20.如圖:在三棱錐S-ABC中,SA⊥面ABC,SA=1,△ABC是邊長(zhǎng)為2的等邊三角形,則二面角S-BC-A的大小為30°.

分析 取BC中點(diǎn)O,連結(jié)SO、AO,推導(dǎo)出SO⊥BC,AO⊥BC,從而∠SOA是二面角S-BC-A的平面角,由此能求出二面角S-BC-A的大小.

解答 解:取BC中點(diǎn)O,連結(jié)SO、AO,
∵在三棱錐S-ABC中,SA⊥面ABC,SA=1,
△ABC是邊長(zhǎng)為2的等邊三角形,
∴SB=SC=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,AO=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
∴SO⊥BC,AO⊥BC,
∴∠SOA是二面角S-BC-A的平面角,
∴tan∠SOA=$\frac{SA}{AO}$=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
∴∠SOA=30°.
故答案為:30°.

點(diǎn)評(píng) 本題考查二面角的大小的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,且雙曲線的實(shí)軸長(zhǎng)是虛軸長(zhǎng)的一半,則該雙曲線的方程為( 。
A.5x2-$\frac{5}{4}$y2=1B.$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{4}$=1C.$\frac{{y}^{2}}{5}-\frac{{x}^{2}}{4}$=1D.5x2-$\frac{4}{5}$y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.sin45°cos105°+sin45°sin15°=( 。
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.四邊形ABCD的內(nèi)角A與C互補(bǔ),AB=1,BC=3,CD=DA=2.
(1)求角C;
(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為梯形,AB∥DC,∠ABC=90°,且PA=AB=BC=$\frac{1}{2}$DC=1,點(diǎn)E在線段PB上,且EB=$\frac{1}{2}$PE.試用向量法解決如下問(wèn)題:
(1)求證:PD∥平面AEC.
(2)求銳二面角A-CE-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.等比數(shù)列{an}的前n項(xiàng)和Sn=a•2n+a-2,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)$f(x)=\left\{\begin{array}{l}{e^x}-1\\ lnx\end{array}\right.$$\begin{array}{l}(x<1)\\(x≥1)\end{array}$,那么f(ln2)的值是(  )
A.0B.1C.ln(ln2)D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,斜三棱柱ABC-A1B1C1,面AA1B1B⊥面ABC,且∠A1AB=60°,AA1=2,△ABC為邊長(zhǎng)為2的等邊三角形,G為△ABC的重心,取BC中點(diǎn)F,連接B1F與BC1交于E點(diǎn):
(1)求證:GE∥面AA1B1B;  
(2)求三棱錐B-B1EA的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)=exlnx在點(diǎn)(1,f(1))處的切線方程是( 。
A.y=2e(x-1)B.y=ex-1C.y=e(x-1)D.y=x-e

查看答案和解析>>

同步練習(xí)冊(cè)答案