1.設(shè)隨機(jī)變量X的分布列如下:
X-101
Pabc
其中a,b,c,成等差數(shù)列,若E(X)=$\frac{1}{3}$,則D(X)的值是( 。
A.$\frac{5}{9}$B.$\frac{5}{8}$C.$\frac{3}{8}$D.$\frac{7}{9}$

分析 利用離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的性質(zhì)、等差數(shù)列性質(zhì),列出方程組,求出a,b,c,由此能求出方差.

解答 解:由題意知:
$\left\{\begin{array}{l}{a+b+c=1}\\{2b=a+c}\\{-a+c=\frac{1}{3}}\end{array}\right.$,
解得a=$\frac{1}{6}$,b=$\frac{1}{3}$,c=$\frac{1}{2}$,
∴D(X)=$(-1-\frac{1}{3})^{2}$×$\frac{1}{6}$+(0-$\frac{1}{3}$)2×$\frac{1}{3}$+(1-$\frac{1}{3}$)2×$\frac{1}{2}$=$\frac{5}{9}$.
故選:A.

點(diǎn)評(píng) 本題考查離散型隨機(jī)變量的方差的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的性質(zhì)、等差數(shù)列性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$與x軸負(fù)半軸交于點(diǎn)A,P為橢圓第一象限上的點(diǎn),直線OP交橢圓于另一點(diǎn)Q,橢圓的左焦點(diǎn)為F,若直線PF平分線段AQ,則橢圓的離心率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知變量x,y滿(mǎn)足約束條件:$\left\{\begin{array}{l}2x-y-2≥0\\ x+2y-1≥0\\ 3x+y-8≤0\end{array}\right.$,則目標(biāo)函數(shù)$z=\frac{y}{x}$的最小值為( 。
A.2B.1C.$-\frac{1}{3}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.求經(jīng)過(guò)點(diǎn)A(1,-1),B(-1,1),且圓心C在直線x+y-2=0上的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)=\sqrt{2}sin({2x+φ})({-π<φ<0})$圖象的一條對(duì)稱(chēng)軸是直線$x=\frac{π}{8}$且f(0)<0,
(1)求φ;
(2)求f(x)的單調(diào)遞減區(qū)間;
(3)求f(x)在$[{0,\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知方程$\frac{{x}^{2}}{1+k}-\frac{{y}^{2}}{1-k}$=1表示雙曲線,則k的取值范圍是-1<k<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知f1(x)=(x2+2x+1)ex,f2(x)=[f1(x)]′,f3(x)=[f2(x)]′,…,fn+1(x)=[fn(x)]′,n∈N*.設(shè)fn(x)=(anx2+bnx+cn)ex,則b2015=4030.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知等比數(shù)列{an}的首項(xiàng)a1=2015,數(shù)列{an}前n項(xiàng)和記為Sn,前n項(xiàng)積記為T(mén)n
(1)若${S_3}=\frac{6045}{4}$,求等比數(shù)列{an}的公比q;
(2)在(1)的條件下,判斷|Tn|與|Tn+1|的大。徊⑶髇為何值時(shí),Tn取得最大值;
(3)在(1)的條件下,證明:若數(shù)列{an}中的任意相鄰三項(xiàng)按從小到大排列,則總可以使其
成等差數(shù)列;若所有這些等差數(shù)列的公差按從小到大的順序依次記為d1,d2,…,dn,則數(shù)列{dn}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在數(shù)列{an}中,a1=2,a17=66,通項(xiàng)公式是關(guān)于n的一次函數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求a20的值;
(3)398是否為數(shù)列中的項(xiàng)?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案