19.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$與雙曲線C2:x2-y2=1有公共的焦點(diǎn),雙曲線C2的一條漸近線與以橢圓C1的長軸為直徑的圓相交于A、B兩點(diǎn),與橢圓C1交于M、N兩點(diǎn),若$AB=\sqrt{2}MN$,則橢圓C1的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{3}+{y}^{2}=1$.

分析 由題意畫出圖形,求出雙曲線的一條漸近線方程,聯(lián)立直線與圓、直線與橢圓求得|AB|、|MN|,再求出雙曲線的焦距,結(jié)合已知列關(guān)于a,b,c的方程組,求解即可得到橢圓C1的標(biāo)準(zhǔn)方程.

解答 解:如圖,雙曲線C2:x2-y2=1的一條漸近線方程為y=x,

由題意可知:|AB|=2a,
聯(lián)立$\left\{\begin{array}{l}{y=x}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1}\end{array}\right.$,得$\left\{\begin{array}{l}{{x}^{2}=\frac{{a}^{2}^{2}}{{a}^{2}+^{2}}}\\{{y}^{2}=\frac{{a}^{2}^{2}}{{a}^{2}+^{2}}}\end{array}\right.$,
∴|MN|=2$\sqrt{\frac{2{a}^{2}^{2}}{{a}^{2}+^{2}}}$,
由題意,$2a=\sqrt{2}•2\sqrt{\frac{2{a}^{2}^{2}}{{a}^{2}+^{2}}}$,即a2+b2=4b2,①
且c=$\sqrt{2}$,又a2=b2+c2,②
聯(lián)立①②解得a2=3,b2=1.
∴橢圓C1的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{3}+{y}^{2}=1$.
故答案為:$\frac{{x}^{2}}{3}+{y}^{2}=1$.

點(diǎn)評 本題考查橢圓的簡單性質(zhì),考查了直線與圓、直線與橢圓位置關(guān)系的應(yīng)用,考查計算能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)△ABC的面積為S1,它的外接圓面積為S2,若△ABC的三個內(nèi)角大小滿足A:B:C=3:4:5,則$\frac{{S}_{1}}{{S}_{2}}$的值為( 。
A.$\frac{25}{12π}$B.$\frac{25}{24π}$C.$\frac{3+\sqrt{3}}{2π}$D.$\frac{3+\sqrt{3}}{4π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若實數(shù)x、y滿足$\left\{\begin{array}{l}{-2x+1≤y≤2x-1}\\{0<x≤3}\end{array}\right.$,則x-2y的取值范圍是[-7,13].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.某三棱錐的三視圖如圖所示,則其外接球的表面積為$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從4臺甲型和5臺乙型電視機(jī)中任取出3臺,在取出的3臺中至少有甲型和乙型電視機(jī)各一臺,則不同取法共有( 。
A.140種B.80種C.70種D.35種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)P,Q分別為圓x2+y2-8x+15=0和拋物線y2=4x上的點(diǎn).則P,Q兩點(diǎn)間的最小距離是2$\sqrt{3}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某校高三(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.

(1)求分?jǐn)?shù)在[50,60)內(nèi)的頻率、全班人數(shù)及分?jǐn)?shù)在[80,90)內(nèi)的頻數(shù);
(2)若要從分?jǐn)?shù)在[80,100)內(nèi)的試卷中任取兩份分析學(xué)生的失分情況,求在抽取的試卷中,至少有一份試卷的分?jǐn)?shù)在[90,100)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={-3,-2,-1},B={x∈Z|-2≤x≤1},則A∪B=( 。
A.{-1}B.{-2,-1}C.{-3,-2,-1,0}D.{-3,-2,-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若變量x,y滿足$\left\{\begin{array}{l}2x+y-2≥0\\ x+y-2≤0\\ x-y-1≤0\end{array}\right.$則$\frac{2x+1}{y+1}$的最小值為(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊答案