20.在平面直角坐標系中,動點M(x,y)滿足條件$\left\{\begin{array}{l}x-y+2≤0\\ x+y-2≤0\\ y-1≥0\end{array}\right.$,動點Q在曲線${(x-1)^2}+{y^2}=\frac{1}{2}$上,則|MQ|的最小值為$\sqrt{2}$.

分析 首先根據(jù)題意作出可行域,|MQ|的其幾何意義為可行域中的點到圓上的點距離,分析圖象可找到可行域內中距離圓心最近的點,代入計算可得答案.

解答 解:如圖可行域和圓為陰影部分,
|MQ|為可行域內點到圓上一點的距離,
∵圓心(1,0)到直線x-y+2=0的距離為:
d=$\frac{|1+2|}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$
則|MQ|的最小值為:
d-r=$\frac{3\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$=$\sqrt{2}$.
故最小值為:$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點評 本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎題.巧妙識別目標函數(shù)的幾何意義是我們研究規(guī)劃問題的基礎,縱觀目標函數(shù)包括線性的與非線性,非線性問題的介入是線性規(guī)劃問題的拓展與延伸,使得規(guī)劃問題得以深化.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.若A(1,3,-2)、B(-2,3,2),則A、B兩點間的距離為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=ex-ax有兩個零點x1,x2,且x1<x2則下列命題中正確的有①②④(填上你認為正確的所有序號)
①a>e
②x1+x2>2 
③x1x2>1 
④有極小值點x0,且x1+x2<2x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知復數(shù)$z=3+\frac{3-4i}{4+3i}$,則$\overline z$=( 。
A.3+5iB.3+iC.3-iD.3-5i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.復數(shù)$\frac{-2+i}{1+2i}$=(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.等差數(shù)列{an}的前n項和為Sn,S7<S9<S8,給出下列命題:
①數(shù)列{an}為遞減數(shù)列;②|a8|>|a9|;③Sn最大值為S8;④滿足Sn>0的n最大值為16.
其中正確的命題個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知O是△ABC外接圓的圓心,已知△ABC外接圓半徑為2,若$4\overrightarrow{OA}+5\overrightarrow{OB}+6\overrightarrow{OC}=\vec 0$,則邊長AB=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的導函數(shù),即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,則f2017(x)=( 。
A.sinx+cosxB.sinx-cosxC.-sinx+cosxD.-sinx-cosx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.定義在R上的偶函數(shù)f(x)滿足f(1-x)=f(1+x),當x∈[1,2]時,f(x)=lnx.則直線x-5y+3=0與曲線y=f(x)的交點個數(shù)為(參考數(shù)據(jù):ln2≈0.69,ln3≈1.10)( 。
A.3B.4C.5D.6

查看答案和解析>>

同步練習冊答案