9.設(shè)$\overrightarrow a=({1,-2}),\overrightarrow b=({3,4}),\overrightarrow c=({2,-1}),則({\overrightarrow a+\overrightarrow b})•\overrightarrow c$=(  )
A.6B.5C.4D.3

分析 根據(jù)題意,由$\overrightarrow{a}$、$\overrightarrow$的坐標(biāo)計(jì)算可得向量$\overrightarrow{a}$+$\overrightarrow$的坐標(biāo),進(jìn)而由向量數(shù)量積的坐標(biāo)計(jì)算公式計(jì)算可得答案.

解答 解:根據(jù)題意,$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(3,4),
則$\overrightarrow{a}$+$\overrightarrow$=(4,2),
又由$\overrightarrow{c}$=(2,-1),
則($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=4×2+2×(-1)=6;
故選:A.

點(diǎn)評(píng) 本題考查向量的數(shù)量積的計(jì)算,關(guān)鍵求出向量$\overrightarrow{a}$+$\overrightarrow$的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北省高二文上第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知點(diǎn),圓是以的中點(diǎn)為圓心,為半徑的圓。

(Ⅰ)若圓的切線在軸和軸上截距相等,求切線方程;

(Ⅱ)若是圓外一點(diǎn),從P向圓引切線,為切點(diǎn),為坐標(biāo)原點(diǎn),且有

,求使最小的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線C2:${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$.
(Ⅰ)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)若C1與C2相交于A、B兩點(diǎn),設(shè)點(diǎn)F(1,0),求$\frac{1}{|FA|}+\frac{1}{|FB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖在平行四邊形ABCD中,E,F(xiàn)分別是BC,DC的中點(diǎn),$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,$\overrightarrow a$,$\overrightarrow b$表示$\overrightarrow{BF}$和$\overrightarrow{DE}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.sin$\frac{π}{6}$的值等于( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.關(guān)于函數(shù)$f(x)=4sin(2x+\frac{π}{3}),x∈$R有下列命題:
①函數(shù) y=f(x)的最小正周期是π.
②函數(shù)y=f(x)的初相是$2x+\frac{π}{3}$.
③函數(shù)y=f(x)的振幅是4.
其中正確的是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)$f(x)=4{sin^2}x+4\sqrt{3}sinxcosx+5$,若不等式f(x)≤m在$[0,\frac{π}{2}]$上有解,則實(shí)數(shù)m的最小值為( 。
A.5B.-5C.11D.-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知$\frac{{{a^2}+2a+2}}{x}≤$$\frac{4}{{{x^2}-x}}+1$對(duì)于任意的x∈(1,+∞)恒成立,則(  )
A.a的最小值為-3B.a的最小值為-4C.a的最大值為2D.a的最大值為4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知點(diǎn)A(0,-1)是拋物線C:x2=2py(p>0)準(zhǔn)線上的一點(diǎn),點(diǎn)F是拋物線C的焦點(diǎn),點(diǎn)P在拋物線C上且滿足|PF|=m|PA|,當(dāng)m取最小值時(shí),點(diǎn)P恰好在以原點(diǎn)為中心,F(xiàn)為焦點(diǎn)的雙曲線上,則此雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{2}$+1D.$\sqrt{3}$+1

查看答案和解析>>

同步練習(xí)冊(cè)答案