A. | a的最小值為-3 | B. | a的最小值為-4 | C. | a的最大值為2 | D. | a的最大值為4 |
分析 $\frac{{{a^2}+2a+2}}{x}≤$$\frac{4}{{{x^2}-x}}+1$對于任意的x∈(1,+∞)恒成立,化為:a2+2a+2≤$\frac{4x}{{x}^{2}-x}$+x=f(x)的最小值.利用導數(shù)研究函數(shù)的單調(diào)性極值與最值即可得出.
解答 解:$\frac{{{a^2}+2a+2}}{x}≤$$\frac{4}{{{x^2}-x}}+1$對于任意的x∈(1,+∞)恒成立,
化為:a2+2a+2≤$\frac{4x}{{x}^{2}-x}$+x=f(x)的最小值.
f′(x)=$\frac{4({x}^{2}-x)-4x(2x-1)}{({x}^{2}-x)^{2}}$+1=$\frac{(x+1)(x-3)}{({x}^{2}-x)^{2}}$,可得x=3時,函數(shù)f(x)取得極小值即最小值.
f(3)=5.
∴a2+2a+2≤5,化為:a2+2a-3≤0,即(a+3)(a-1)≤0,解得-3≤a≤1.
因此a的最小值為-3.
故選:A.
點評 本題考查了利用導數(shù)研究函數(shù)的單調(diào)性極值與最值,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | 1 | C. | $\frac{1}{2}$ | D. | 2-$\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $a>-\frac{17}{3}$ | B. | $a≥-\frac{17}{3}$ | C. | $a<-\frac{17}{3}$ | D. | $a≤-\frac{17}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{16}$ | B. | $\frac{9}{16}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1) | B. | (1,+∞) | C. | (-1,1) | D. | (-∞,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com