14.已知函數(shù)f(x)=(a-2)ax(a>0,且a≠1),若對(duì)任意x1,x2∈R,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,則a的取值范圍是a>2或0<a<1.

分析 利用已知條件判斷函數(shù)的單調(diào)性,然后列出不等式組求解即可.

解答 解:對(duì)任意x1,x2∈R,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,由函數(shù)的單調(diào)性的定義可知函數(shù)是增函數(shù),
函數(shù)f(x)=(a-2)ax(a>0,且a≠1),
可得:$\left\{\begin{array}{l}{a-2>0}\\{a>1}\end{array}\right.$或$\left\{\begin{array}{l}{a-2<0}\\{0<a<1}\end{array}\right.$,
解得a>2或0<a<1.
故答案為:a>2或0<a<1.

點(diǎn)評(píng) 本題考查函數(shù)與方程的應(yīng)用,函數(shù)的單調(diào)性的判斷,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),其公差為2,a2a4=4a3+1.
(1)求{an}的通項(xiàng)公式;
(2)求a1+a3+a9+…+${a}_{{3}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知(2a+2c-b)cosC=(a+c)cosB+bcosA,若c=3,則a+b的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為矩形,E為PC的中點(diǎn),且$PD=AD=\frac{1}{2}AB=4$.
(1)過點(diǎn)A作一條射線AG,使得AG∥BD,求證:平面PAG∥平面BDE;
(2)若點(diǎn)F為線段PC上一點(diǎn),且DF⊥平面PBC,求四棱錐F-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某市為了節(jié)約生活用水,計(jì)劃在本市試行居民生活用水定額管理.為了較合理地確定居民日常用水量的標(biāo)準(zhǔn),有關(guān)部門抽樣調(diào)查了100位居民.表是這100位居民月均用水量(單位:噸)的頻率分布表,根據(jù)表解答下列問題:
(1)求表中a和b的值;
(2)請(qǐng)將下面的頻率分布直方圖補(bǔ)充完整,并根據(jù)直方圖估計(jì)該市每位居民月均用水量的眾數(shù).
分組頻數(shù)頻率
[0,1)100.1
[1,2)a0.2
[2,3)300.3
[3,4)20b
[4,5)100.1
[5,6)100.1
合計(jì)1001

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在四棱錐V-ABCD中,B1,D1分別為側(cè)棱VB,VD的中點(diǎn),則四面體A-B1CD1的體積與四棱錐V-ABCD的體積之比為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若$sinα=\frac{3}{5}(0<α<\frac{π}{2})$,則$sin(α+\frac{π}{6})$=( 。
A.$\frac{{3\sqrt{3}-4}}{10}$B.$\frac{{3\sqrt{3}+4}}{10}$C.$\frac{{3-4\sqrt{3}}}{10}$D.$\frac{{3+4\sqrt{3}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$tanx=\frac{1}{2}$,則sin2x+3sinxcosx-1=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)對(duì)任意實(shí)數(shù)x都滿足條件f(x+2)f(x)=1,若f(2)=2,則f(2016)=( 。
A.$\frac{1}{2}$B.2C.$\frac{1}{2016}$D.2016

查看答案和解析>>

同步練習(xí)冊(cè)答案