【題目】萊市在市內(nèi)主于道北京路一側修建圓形休閑廣場.如圖,圓形廣場的圓心為,半徑為,并與北京路一邊所在直線相切于點.為上半圓弧上一點,過點的垂線,垂足為點.市園林局計劃在內(nèi)進行綠化,設的面積為(單位:),(單位:弧度).

1)將表示為的函數(shù);

2)當綠化面積最大時,試確定點的位置,并求最大面積.

【答案】12)點到北京路一邊的距離為;最大值

【解析】

1)利用三角函數(shù)的定義求出,的長,利用三角形的面積公式求出的面積

2)對求導,令導函數(shù)為0求出根,判斷根左右兩邊導函數(shù)的符號,求出的最大值.

解:(1)如圖,

.

2

.,

(舍去),

此時

變化時,,的變化情況如下表:

極大值

所以,當時,取得最大值,此時,即點到北京路一邊的距離為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直二面角D—AB—E中,四邊形ABCD是邊長為2的正方形,AE=EB,FCE上的點,且BF平面ACE.

)求證AE平面BCE;

)求二面角B—AC—E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某“ 型水渠南北向?qū)挒?/span>,東西向?qū)挒?/span>,其俯視圖如圖所示.假設水渠內(nèi)的水面始終保持水平位置.

(1) 過點的一條直線與水渠的內(nèi)壁交于兩點,且與水渠的一邊的夾角為為銳角),將線段的長度表示為的函數(shù);

(2) 若從南面漂來一根長度為的筆直的竹竿(粗細不計),竹竿始終浮于水平面內(nèi),且不發(fā)生形變,問:這根竹竿能否從拐角處一直漂向東西向的水渠(不會卡。吭囌f明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系,取相同的長度單位,若曲線的極坐標方程為,曲線的參數(shù)方程為為參數(shù)),設是曲線上任一點,是曲線上任一點.

(1)求交點的極坐標;

(2)已知直線,點在曲線上,求點的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若存在、滿足.求證 (其中的導函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】徐州、蘇州兩地相距500千米,一輛貨車從徐州勻速行駛到蘇州,規(guī)定速度不得超過100千米/小時.已知貨車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時)的平方成正比,比例系數(shù)為0.01;固定部分為元(0).

1)把全程運輸成本y(元)表示為速度v(千米/時)的函數(shù),并指出這個函數(shù)的定義域;

2)為了使全程運輸成本最小,汽車應以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 某個集團公司下屬的甲、乙兩個企業(yè)在2014年1月的產(chǎn)值都為a萬元,甲企業(yè)每個月的產(chǎn)值與前一個月相比增加的產(chǎn)值相等,乙企業(yè)每個月的產(chǎn)值與前一個月相比增加的百分數(shù)相等,到2015年1月兩個企業(yè)的產(chǎn)值再次相等.

(1)試比較2014年7月甲、乙兩個企業(yè)產(chǎn)值的大小,并說明理由.

(2)甲企業(yè)為了提高產(chǎn)能,決定投入3.2萬元買臺儀器,并且從2015年2月1日起投入使用.從啟用的第一天起連續(xù)使用,第n天的維修保養(yǎng)費為元(n∈N*),求前n天這臺儀器的日平均耗資(含儀器的購置費),并求日平均耗資最小時使用的天數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學在平昌冬奧會開幕后的第二天,從全校學生中隨機抽取了120名學生,對是否收看平昌冬奧會開幕式情況進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

收看

沒收看

男生

60

20

女生

20

20

(Ⅰ)根據(jù)上表說明,能否有的把握認為收看開幕式與性別有關?

(Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學生中采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.

(ⅰ)問男、女學生各選取多少人?

(ⅱ)若從這8人中隨機選取2人到校廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率P.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,為直角三角形,,且.

1)證明:平面平面

2)若AB=2AE,求異面直線BE與AC所成角的余弦值.

查看答案和解析>>

同步練習冊答案