7.閱讀如圖的程序框圖,若運(yùn)行此程序,則輸出S的值為$\frac{\sqrt{3}}{2}$.

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算
并輸出變量S=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+…+sin$\frac{2016π}{3}$+sin$\frac{2017π}{3}$的值,
∵sin$\frac{nπ}{3}$的值以6為周期呈周期性變化,且一個(gè)周期內(nèi)的值的和為0,且2017÷6=336…1,
∴S=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+…+sin$\frac{2016π}{3}$+sin$\frac{2017π}{3}$=336×0+sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,考查了正弦函數(shù)的圖象和性質(zhì),模擬執(zhí)行程序框圖,得到程序的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知單位向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a+3\overrightarrow b}|=\sqrt{13}$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合A={2,4,6,8},$B=\left\{{x|y=\sqrt{4-x}}\right\}$,則A∩B=( 。
A.{2}B.{2,4}C.{2,4,6}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.按如圖所示的程序框圖,若輸入a=110101,則輸出的b=( 。
A.53B.51C.49D.47

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.全集為實(shí)數(shù)集R,集合M={x||x|≤3},集合N={x|x<2},則(∁RM)∩N=( 。
A.{x|x<-3}B.{x|-3<x<2}C.{x|x<2}D.{x|-3≤x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知全集U=R,集合A={x|-3≤x≤1},集合B=$\left\{{x\left|{{2^x}<\frac{1}{4}}\right.}\right\}$,則A∩(∁UB)=( 。
A.{x|-2<x<1}B.{x|-3≤x<-2}C.{x|-2≤x≤1}D.{x|-3≤x≤-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且2sinCcosB=2sinA+sinB,c=3ab,則ab的最小值是( 。
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{2+\sqrt{3}}{9}$D.$\frac{2-\sqrt{3}}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和Sn=2(an-1),等差數(shù)列{bn}滿足b1=a1,b4=a3,其中n∈N*.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若Cn=(-1)nbnbn+1,求數(shù)列{cn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,三棱錐P-ABC中,底面ABC為等邊三角形,O為△ABC的中心,平面PBC⊥平面ABC,PB=PC=BC=$\sqrt{3}$,D為AP上一點(diǎn),且AD=2DP.
(I)求證:DO∥平面PBC;
(II)求證:AC⊥平面OBD;
(III)設(shè)M為PC的中點(diǎn),求二面角M-BD-O的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案