分析 (1)根據(jù)公式計(jì)算;
(2)猜想結(jié)論,利用數(shù)學(xué)歸納法證明.
解答 解:(1)a1=$\frac{1}{(1+1)^{2}}$=$\frac{1}{4}$,a2=$\frac{1}{(2+1)^{2}}$=$\frac{1}{9}$,a3=$\frac{1}{(3+1)^{2}}$=$\frac{1}{16}$.
∴f(1)=1-a1=$\frac{3}{4}$,
f(2)=(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)=$\frac{2}{3}$,
f(3)=(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)=$\frac{5}{8}$.
(2)猜想:$f(n)=\frac{n+2}{2n+2}$,
證明如下:
當(dāng)n=1時(shí),結(jié)論顯然成立,
假設(shè)n=k時(shí),結(jié)論成立,即f(k)=(1-a1)(1-a2)…(1-ak)=$\frac{k+2}{2k+2}$,
則當(dāng)n=k+1時(shí),f(k+1)=(1-a1)(1-a2)…(1-ak)(1-ak+1)=f(k)(1-ak+1)
=$\frac{k+2}{2k+2}$•(1-$\frac{1}{(k+2)^{2}}$)=$\frac{k+2}{2k+2}$•(1+$\frac{1}{k+2}$)(1-$\frac{1}{k+2}$)=$\frac{k+2}{2k+2}$•$\frac{k+3}{k+2}$•$\frac{k+1}{k+2}$=$\frac{k+3}{2(k+2)}$=$\frac{k+1+2}{2(k+1)+2}$.
∴當(dāng)n=k+1時(shí),結(jié)論成立,
綜上,對(duì)任意正整數(shù)n∈N,都有$f(n)=\frac{n+2}{2n+2}$.
點(diǎn)評(píng) 本題考查了數(shù)學(xué)歸納法猜想并證明,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [9,11] | B. | [9,12] | C. | [9,13] | D. | [9,14] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 50 | B. | -50 | C. | 100 | D. | -100 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com