A. | (2,3) | B. | $(\root{3}{3},2)$ | C. | $(\root{3}{4},2)$ | D. | $(\root{3}{2},3)$ |
分析 根據(jù)題意f(x-2)=f(x+2),可得f(x+4)=f(x),周期T=4,且是偶函數(shù),當(dāng)x∈[-2,0]時(shí),f(x)=($\frac{1}{2}$)x-1,可以做出在區(qū)間(-2,6]的圖象,方程f(x)-loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,即f(x)的圖象與y=loga(x+2)的圖象恰有3個(gè)不同的交點(diǎn).可得答案.
解答 解:由題意f(x-2)=f(x+2),可得f(x+4)=f(x),
周期T=4,當(dāng)x∈[-2,0]時(shí),f(x)=($\frac{1}{2}$)x-1,
∴可得(-2,6]的圖象如下:
從圖可看出,要使f(x)的圖象與y=loga(x+2)的圖象恰有3個(gè)不同的交點(diǎn),
則需滿(mǎn)足$\left\{\begin{array}{l}{lo{g}_{a}(2+2)<3}\\{lo{g}_{a}(6+2)>3}\end{array}\right.$,
解得:$\root{3}{4}<a<2$.
故選C.
點(diǎn)評(píng) 本題主要考查方程根的個(gè)數(shù)的判斷,根據(jù)函數(shù)的奇偶性和對(duì)稱(chēng)性的性質(zhì)求出函數(shù)的周期性,利用數(shù)形結(jié)合是解決本題的關(guān)鍵,綜合性較強(qiáng),難度較大
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | cosx | B. | -cosx | C. | sinx+xcosx | D. | sinx-xcosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | “?x∈R,x2>0”的否定是“?x0∈R,x02≤0” | |
B. | “?x0∈R,x02<0”的否定是“?x∈R,x2<0” | |
C. | “?θ0∈R,sinθ0+cosθ0<1”的否定是“?θ∈R,sinθ+cosθ≥1” | |
D. | “?θ∈R,sinθ≤1”的否定是?θ0∈R,sinθ0>1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com