已知函數(shù)常數(shù))滿足.
(1)求出的值,并就常數(shù)的不同取值討論函數(shù)奇偶性;
(2)若在區(qū)間上單調遞減,求的最小值;
(3)在(2)的條件下,當取最小值時,證明:恰有一個零點且存在遞增的正整數(shù)數(shù)列,使得成立.
(1),時是偶函數(shù),時,非奇非偶函數(shù);(2);(3)證明見解析.

試題分析:(1)直接代入已知可求得,根據奇偶函數(shù)的定義可說明函數(shù)是奇(偶)函數(shù),如果要說明它不是奇(偶)函數(shù),可舉例說明,即;(2)據題意,即當時,總有成立,變形整理可得,由于分母,故,即,注意到,,從而,因此有;(3)在(2)的條件下,,理論上講應用求出零點,由函數(shù)表達式可看出,當時,無零點,當時,函數(shù)是遞增函數(shù),如有零點,只有一個,解方程,即,根據零點存在定理確定出,這個三次方程具體的解求不出,但可變形為,想到無窮遞縮等比數(shù)列的和,有,因此可取.證畢.
(1)由,解得.
從而,定義域為
時,對于定義域內的任意,有為偶函數(shù)  2分
時,從而不是奇函數(shù);,不是偶函數(shù),非奇非偶.      4分
(2)對于任意的,總有恒成立,即,得.    6分
,,從而.
,∴,的最小值等于.      10分
(3)在(2)的條件下,.
時,恒成立,函數(shù)無零點.    12分
時,對于任意的,恒有,
,所以函數(shù)上遞增,又,,
是有一個零點.
綜上恰有一個零點,且        15分
,得
,故,
          18分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

某廠去年的產值為1,若計劃在今后五年內每年的產值比上年增長10%,則從今年起到第五年這五年內,這個廠的總產值約為________.(保留一位小數(shù),取1.15≈1.6)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

有以下判斷:
(1)f(x)=與g(x)=,表示同一個函數(shù).
(2)f(x)=x2-2x+1與g(t)=t2-2t+1是同一函數(shù).
(3)若f(x)=|x-1|-|x|,則=0.
其中正確判斷的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)為偶函數(shù).
(1)求的值;
(2)若方程有且只有一個根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的部分圖象如下,其中正確的是(      )

A                  B                  C                 D

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知f是有序數(shù)對集合上的一個映射,正整數(shù)數(shù)對在映射f下的象為實數(shù)z,記作. 對于任意的正整數(shù),映射由下表給出:








 
__________,使不等式成立的x的集合是_____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義:若存在常數(shù),使得對定義域內的任意兩個,均有 成立,則稱函數(shù)在定義域上滿足利普希茨條件.若函數(shù)滿足利普希茨條件,則常數(shù)的最小值為()
A.4 B.3 C.1 D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某造紙廠擬建一座底面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80元/平方米,水池所有墻的厚度忽略不計.

(1)試設計污水處理池的長和寬,使總造價最低,并求出最低總造價;
(2)若由于地形限制,該池的長和寬都不能超過16米,試設計污水處理池的長和寬,使總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設函數(shù)在區(qū)間上的導函數(shù)為,在區(qū)間上的導函數(shù)為,若在區(qū)間恒成立,則稱函數(shù)在區(qū)間上為“凸函數(shù)”.已知,若對任意的實數(shù)滿足時,函數(shù)在區(qū)間上為“凸函數(shù)”,則的最大值為(     )
A.4B.3C.2D.1

查看答案和解析>>

同步練習冊答案