13.若實(shí)數(shù)x,y滿足x2+y2-2y=0,且(k-1)x-y-3k+5≤0恒成立,則實(shí)數(shù)k的取值范圍為k≥$\frac{7}{4}$.

分析 設(shè)x=cosθ,y=1+sinθ,則(k-1)x-y-3k+5≤0恒成立,即(k-1)cosθ-sinθ-3k+4≤0恒成立,利用三角函數(shù)可得結(jié)論.

解答 解:設(shè)x=cosθ,y=1+sinθ,則(k-1)x-y-3k+5≤0恒成立,即(k-1)cosθ-sinθ-3k+4≤0恒成立,
∴$\sqrt{(k-1)^{2}+1}$cos(θ+α)≤3k-4,
∴$\sqrt{(k-1)^{2}+1}$≤3k-4,
∴k≥$\frac{7}{4}$,
故答案為k≥$\frac{7}{4}$.

點(diǎn)評(píng) 本題考查圓的方程,考查三角函數(shù)知識(shí)的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.對(duì)某一批產(chǎn)品進(jìn)行抽樣檢查,采取一件一件地抽查.若抽查4件未發(fā)現(xiàn)不合格產(chǎn)品,則停止檢查并認(rèn)為該批產(chǎn)品合格.若在查到第四件或在此之前發(fā)現(xiàn)不合格產(chǎn)品也停止檢查,并認(rèn)為該批產(chǎn)品不合格.假定合格概率為0.9;
(1)求該隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(2)通過抽樣檢查,認(rèn)為該批產(chǎn)品不合格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)$y={3^{\sqrt{4+3x-{x^2}}}}$的值域?yàn)?[{1,9\sqrt{3}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=xex-ae2x(a∈R)恰有兩個(gè)極值點(diǎn)x1,x2(x1<x2).
(1)求實(shí)數(shù)a的取值范圍;
(2)求證:f(x2)>-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知F為雙曲線$C:\frac{x^2}{4}-\frac{y^2}{2}=1$的一個(gè)焦點(diǎn),則點(diǎn)F到雙曲線C的一條漸近線的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,圓O的半徑OA與OB相互垂直,E為圓O上一點(diǎn),直線OB與圓O交于另一點(diǎn)F,與直線AE交于點(diǎn)D,過點(diǎn)E的切線CE交線段于點(diǎn)C,求證:CD2=CB•CF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知變量x,y呈現(xiàn)線性相關(guān)關(guān)系,回歸方程為$\widehat{y}$=1-2x,則變量x,y是(  )
A.線性正相關(guān)關(guān)系
B.由回歸方程無法判斷其正負(fù)相關(guān)關(guān)系
C.線性負(fù)相關(guān)關(guān)系
D.不存在線性相關(guān)關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題P:?x∈(-∞,0),2x<3x;命題q:?x∈(0,π),sinx≤1,則下列命題為真命題的是(  )
A.p∧qB.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)數(shù)列{an}是單調(diào)遞增的等差數(shù)列,a1=2且a1-1,a3,a5+5成等比數(shù)列,則a2017=( 。
A.1008B.1010C.2016D.2017

查看答案和解析>>

同步練習(xí)冊答案