【題目】在正三角形中, 分別是邊上的點,滿足 (如圖),將沿折起到的位置,使二面角成直二面角,連接 (如圖).
(1) 求證: 平面;
(2)求二面角的余弦值的大;
科目:高中數(shù)學(xué) 來源: 題型:
【題目】請先閱讀:
在等式cos2x=2cos2x﹣1(x∈R)的兩邊求導(dǎo),得:(cos2x)′=(2cos2x﹣1)′,由求導(dǎo)法則,得(﹣sin2x)2=4cosx(﹣sinx),化簡得等式:sin2x=2cosxsinx.
(1)利用上題的想法(或其他方法),結(jié)合等式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈R,正整數(shù)n≥2),證明: .
(2)對于正整數(shù)n≥3,求證:
(i) ;
(ii) ;
(iii) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn是等差數(shù)列{an}的前n項和,且a2=2,S5=15.
(1)求通項公式an;
(2)若數(shù)列{bn}滿足bn=2an﹣an , 求{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 .
(1)確定函數(shù)f(x)的解析式;
(2)當(dāng)x∈(﹣1,1)時判斷函數(shù)f(x)的單調(diào)性,并證明;
(3)解不等式f(2x﹣1)+f(x)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用min{a,b,c}表示a,b,c三個數(shù)中的最小值,設(shè)f(x)=min{2x , x+2,10﹣x}(x≥0),則f(x)的最大值為( )
A.7
B.6
C.5
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2a4x﹣2x﹣1.
(1)當(dāng)a=1時,求函數(shù)f(x)的零點;
(2)若f(x)有零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個函數(shù):
①y=3﹣x;②y=2x﹣1(x>0);③y=x2+2x﹣10,;④ .
其中定義域與值域相同的函數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= +x在x=1處的切線方程為2x﹣y+b=0.
(1)求實數(shù)a,b的值;
(2)設(shè)函數(shù)g(x)=f(x)+ x2﹣kx,且g(x)在其定義域上存在單調(diào)遞減區(qū)間(即g′(x)<0在其定義域上有解),求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個命題正確的個數(shù)( )
①用反證法證明數(shù)學(xué)命題時首先應(yīng)該做出與命題結(jié)論相矛盾的假設(shè).否定“自然數(shù)a,b,c中恰有一個奇數(shù)”時正確的反設(shè)為“自然數(shù)a,b,c中至少有兩個奇數(shù)或都是偶數(shù)”;
②在復(fù)平面內(nèi),表示兩個共軛復(fù)數(shù)的點關(guān)于實軸對稱;
③在回歸直線方程 =﹣0.3x+10中,當(dāng)變量x每增加一個單位時,變量 平均增加0.3個單位;
④拋物線y=x2過點( ,2)的切線方程為2x﹣y﹣1=0.
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com