分析 (1)設Q(x0,2),代入拋物線方程,結合拋物線的定義,可得p=2,進而得到拋物線方程;
(2)設直線l的方程為x+y-1=0,設M(x1,y1),N(x2,y2),假設不存在M,N,使得M,N關于直線l對稱,得出矛盾即可.
解答 解:(1)設Q(x0,2),P(0,2)代入由y2=2px(p>0)中得x0=$\frac{2}{p}$,
所以|PQ|=$\frac{2}{p}$,|QF|=$\frac{p}{2}$+$\frac{2}{p}$,
由題設得$\frac{p}{2}$+$\frac{2}{p}$=2×$\frac{2}{p}$,解得p=-2(舍去)或p=2.
所以C的方程為y2=4x.
(2)設直線l的方程為x+y-1=0,設M(x1,y1),N(x2,y2),則kMN=$\frac{4}{{y}_{1}+{y}_{2}}$,
MN的中點T的坐標為($\frac{{{y}_{1}}^{2}+{{y}_{2}}^{2}}{8}$,$\frac{{y}_{1}+{y}_{2}}{2}$),
∵M,N關于直線l對稱,∴MN⊥l,∴$\frac{4}{{y}_{1}+{y}_{2}}$=1①,
∵中點T在直線l上,∴$\frac{{y}_{1}+{y}_{2}}{2}$=-$\frac{{{y}_{1}}^{2}+{{y}_{2}}^{2}}{8}$+1②,
由①②可得y1+y2=4,y1y2=4,
∴y1,y2是方程y2-4y+4=0的兩個根,此方程有兩個相等的根,
∴C上不存在M,N,使得M,N關于直線l對稱.
點評 本題考查拋物線的方程,考查直線與拋物線的位置關系,考查韋達定理的運用,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 1.9升 | B. | 2.1升 | C. | 2.2升 | D. | 2.3升 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 4 | C. | 8 | D. | 11 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,1-$\frac{1}{{e}^{2}}$] | B. | (-∞,-$\frac{1}{{e}^{2}}$] | C. | [-$\frac{1}{{e}^{2}}$,+∞) | D. | [1-$\frac{1}{{e}^{2}}$,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | A,B兩點在平面α的同側 | B. | A,B兩點在平面α的異側 | ||
C. | 過A,B兩點必有垂直于平面α的平面 | D. | 過A,B兩點必有平行于平面α的平面 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com