14.已知函數(shù)f(x)=x2-2x,g(x)=ax-1,若?x1∈[-1,2],?x2∈[-1,2],使得f(x1)=g(x2),求a的取值范圍.

分析 ?x1∈[-1,2],?x2∈[-1,2],使得f(x1)=g(x2),轉(zhuǎn)化為x2∈[-1,2]時,g(x2)的值域A與f(x1)的值域B的關(guān)系是A?B,由此求出實數(shù)a的取值范圍.

解答 解:若?x1∈[1,2],?x2∈[-1,2],使得f(x1)=g(x2),即g(x)在[-1,2]上的值域要包含f(x)在[-1,2]上的值域,
又在[-1,2]上,f(x)∈[-1,3].
①當a<0時,g(x)=ax-1單調(diào)遞減,g(x)∈[2a-1,-a-1],此時$\left\{\begin{array}{l}{2a-1≤-1}\\{-a-1≥3}\end{array}\right.$,解得a≤-4,
②當a=0時,g(x)=-1,顯然不滿足題設(shè);
③當a>0時,g(x)=ax-1單調(diào)遞增,g(x)∈[-a-1,2a-1],此時$\left\{\begin{array}{l}{-a-1≤-1}\\{2a-1≥3}\end{array}\right.$,解得a≥2.
綜上,?x1∈[1,2],?x2∈[-1,2]使得f(x1)=g(x2)的取值范圍為(-∞,-4]∪[2,+∞).

點評 本題考查了二次函數(shù)在閉區(qū)間上的最值問題,解題時應根據(jù)題意構(gòu)造函數(shù),求出函數(shù)的最值和值域,分類解答,是綜合性題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知變量x,y滿足$\left\{{\begin{array}{l}{x+2y-4≤0}\\{x≥1}\\{y≥0}\end{array}}\right.$,則z=-2x+y的最大值是( 。
A.2B.$-\frac{1}{2}$C.-2D.-8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.《九章算術(shù)》“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第5節(jié)的容積為( 。
A.$\frac{10}{11}$升B.$\frac{65}{66}$升C.$\frac{67}{66}$升D.$\frac{37}{33}$升

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知數(shù)列{an}是遞增等差數(shù)列,且a1+a4=8,a2a3=15,設(shè)${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,則數(shù)列{bn}的前10項和為( 。
A.$\frac{9}{19}$B.$\frac{18}{19}$C.$\frac{20}{21}$D.$\frac{10}{21}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若x,y滿足約束條件$\left\{\begin{array}{l}x+y-1≥0\\ y≥2x-2\\ y≤2\end{array}\right.$,且z=kx+y取最小值時的最優(yōu)解有無數(shù)個,則k=-2或1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知a∈R,設(shè)命題p:空間兩點B(1,a,2)與C(a+1,a+3,0)的距離|BC|>$\sqrt{17}$;命題q:函數(shù)f(x)=x2-2ax-2在區(qū)間(0,3)上為單調(diào)函數(shù).
(Ⅰ)若命題p為真命題,求實數(shù)a的取值范圍;
(Ⅱ)若命題“¬q”和“p∧q”均為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知{an}是等比數(shù)列,a2=2且公比q>0,-2,a1,a3成等差數(shù)列.
(Ⅰ)求q的值;
(Ⅱ)已知bn=anan+1-λnan+1(n=1,2,3,…),設(shè)Sn是數(shù)列{bn}的前n項和.若S1>S2,且Sk<Sk+1(k=2,3,4,…),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知直線l:ax+y+b=0與圓O:x2+y2=4相交于A、B兩點,$M({\sqrt{3},-1})$,且$\overrightarrow{OA}+\overrightarrow{OB}=\frac{2}{3}\overrightarrow{OM}$,則$\sqrt{3}ab$等于( 。
A.-3B.-4C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設(shè)數(shù)列{an}滿足:a1=2,an+1=1-$\frac{1}{{a}_{n}}$,記數(shù)列{an}的前n項之積為T,則T2017的值為( 。
A.-$\frac{1}{2}$B.-1C.2D.-2

查看答案和解析>>

同步練習冊答案