11.高斯是德國著名的數(shù)學(xué)家,享有“數(shù)學(xué)王子”之稱,以他的名字“高斯”命名的成果達(dá)110個,設(shè)x∈R,用[x]表示不超過x的最大整數(shù),并用{x}=x-[x]表示x的非負(fù)純小數(shù),則y=[x]稱為高斯函數(shù),已知數(shù)列{an}滿足:${a_1}=\sqrt{3},{a_{n+1}}=[{a_n}]+\frac{1}{{\left\{{a_n}\right\}}},(n∈{N^*})$,則a2017=$3024+\sqrt{3}$.

分析 由于:${a_1}=\sqrt{3},{a_{n+1}}=[{a_n}]+\frac{1}{{\left\{{a_n}\right\}}},(n∈{N^*})$,經(jīng)過計算可得:數(shù)列{a2k-1}成等差數(shù)列,首項為$\sqrt{3}$,公差為3.即可得出.

解答 解:滿足:${a_1}=\sqrt{3},{a_{n+1}}=[{a_n}]+\frac{1}{{\left\{{a_n}\right\}}},(n∈{N^*})$,
∴a2=1+$\frac{1}{\sqrt{3}-1}$=2+$\frac{\sqrt{3}-1}{2}$.
a3=2+$\frac{1}{\frac{\sqrt{3}-1}{2}}$=3+$\sqrt{3}$=4+($\sqrt{3}$-1),
a4=4+$\frac{1}{\sqrt{3}-1}$=5+$\frac{\sqrt{3}-1}{2}$,
a5=5+$\frac{1}{\frac{\sqrt{3}-1}{2}}$=6+$\sqrt{3}$=7+($\sqrt{3}$-1).
a6=7+$\frac{1}{\sqrt{3}-1}$=8+$\frac{\sqrt{3}-1}{2}$,
a7=8+$\frac{1}{\frac{\sqrt{3}-1}{2}}$=9+$\sqrt{3}$=10+($\sqrt{3}$-1),
…,
可得:數(shù)列{a2k-1}成等差數(shù)列,首項為$\sqrt{3}$,公差為3.
則a2017=$\sqrt{3}$+3×(1009-1)=3024+$\sqrt{3}$.
故答案為:$3024+\sqrt{3}$.

點(diǎn)評 本題考查了數(shù)列遞推關(guān)系、等差數(shù)列的通項公式、歸納法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=lnx-\frac{1}{2}{x^2}+\frac{a}{x}$(a∈R,a為常數(shù)),函數(shù)$g(x)={e^{1-x}}+\frac{2a-1}{2}{x^2}-1$(e為自然對數(shù)的底).
(1)討論函數(shù)f(x)的極值點(diǎn)的個數(shù);
(2)若不等式f(x)≤g(x)對x∈[1,+∞)恒成立,求實(shí)數(shù)的a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$滿足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,若$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=1(λ,μ∈R),則|$\overrightarrow{OC}$|的最小值為( 。
A.1B.$\frac{\sqrt{5}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在銳角△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,已知c=2,$\sqrt{3}a=2csinA$
(1)求角C
(2)若△ABC的面積等于$\sqrt{3}$,求a,b; 
(3)求△ABC的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知直線2x+my-8=0與圓C:(x-m)2+y2=4相交于A、B兩點(diǎn),且△ABC為等腰直角三角形,則m=2或14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.橢圓ax2+by2=1(a>0,b>0,且a≠b)與直線x+y-1=0相交于A,B兩點(diǎn),C是AB的中點(diǎn),若|AB|=2$\sqrt{2}$,直線OC的斜率為$\frac{\sqrt{2}}{2}$,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓O:x2+y2=8內(nèi)有一點(diǎn)P0(-1,2),AB為過點(diǎn)P0且傾斜角為α的弦.
(1)當(dāng)α=135°時,求弦AB的長;
(2)當(dāng)弦AB被P0平分時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=4cosθ,曲線M的直角坐標(biāo)方程為x-2y+2=0(x>0)
(1)以曲線M上的點(diǎn)與點(diǎn)O連線的斜率k為參數(shù),寫出曲線M的參數(shù)方程;
(2)設(shè)曲線C與曲線M的兩個交點(diǎn)為A,B,求直線OA與直線OB的斜率之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)銳角△ABC中,角A,B,C的對邊分別為a,b,c,且$\frac{2}$是2asinAcosC與csin2A的等差中項.
(Ⅰ)求角A的大。
(Ⅱ)若a=2,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案