5.過(guò)(2,0)點(diǎn)作圓(x-1)2+(y-1)2=1的切線,所得切線方程為( 。
A.y=0B.x=1和y=0C.x=2和y=0D.不存在

分析 由題意得圓心為C(1,1),半徑r=1.討論當(dāng)l過(guò)點(diǎn)(2,0)與x軸垂直時(shí),直線l與x軸不垂直,可設(shè)切線l的方程為y=k(x-2),根據(jù)直線l與圓相切,利用點(diǎn)到直線的距離公式建立關(guān)于k的等式,解出k,即可得所求切線方程.

解答 解:圓(x-1)2+(y-1)2=1的圓心為C(1,1),半徑r=1.
①當(dāng)直線l經(jīng)過(guò)點(diǎn)P(2,0)與x軸垂直時(shí),方程為x=2,
∵圓心到直線x=2的距離等于1,∴直線l與圓相切,即x=2符合題意;
②當(dāng)直線l經(jīng)過(guò)點(diǎn)P(2,0)與x軸不垂直時(shí),設(shè)方程為y=k(x-2),即kx-y-2k=0.
∵直線l與圓(x-1)2+(y-1)2=1相切,
∴圓心到直線l的距離等于半徑,即d=$\frac{|k-1-2k|}{\sqrt{1+{k}^{2}}}$=1,解之得k=0,
因此直線l的方程為y=0,
綜上所述,可得所求切線方程為x=2或y=0.
故選C.

點(diǎn)評(píng) 本題給出圓的方程,求圓經(jīng)過(guò)定點(diǎn)的切線方程.著重考查了點(diǎn)到直線的距離公式、圓的標(biāo)準(zhǔn)方程和直線與圓的位置關(guān)系等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.2016年,某省環(huán)保部門(mén)制定了《省工業(yè)企業(yè)環(huán)境保護(hù)標(biāo)準(zhǔn)化建設(shè)基本要求及考核評(píng)分標(biāo)準(zhǔn)》,為了解本省各家企業(yè)對(duì)環(huán)保的重視情況,從中抽取了40家企業(yè)進(jìn)行考核評(píng)分,考核評(píng)分均在[50,100]內(nèi),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖如圖(滿分為100分).
(Ⅰ)已知該省對(duì)本省每家企業(yè)每年的環(huán)保獎(jiǎng)勵(lì)y(單位:萬(wàn)元)與考核評(píng)分x的關(guān)系式為y=$\left\{\begin{array}{l}{-7,50≤x<60}\\{0,60≤x<70}\\{3,70≤x<80}\\{6,80≤x<100}\end{array}\right.$(負(fù)值為企業(yè)上繳的罰金),試估計(jì)該省在2016年對(duì)這40家企業(yè)投放環(huán)保獎(jiǎng)勵(lì)的平均值;
(Ⅱ)在這40家企業(yè)中,從考核評(píng)分在80分以上(含80分)的企業(yè)中隨機(jī)抽取2家企業(yè)座談環(huán)保經(jīng)驗(yàn),求抽取的2家企業(yè)全部為考核評(píng)分在[80,90)內(nèi)的企業(yè)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在一次跳傘訓(xùn)練中,甲.乙兩位學(xué)員各跳一次,設(shè)命題p是“甲降落在指定范圍”,q是“乙降落在指定范圍”,則命題“兩位學(xué)員都沒(méi)有降落在指定范圍”可表示為(  )
A.(¬p)∨(¬q)B.p∨(¬q)C.p∨qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.復(fù)數(shù)z=(3+2i)2(i為虛數(shù)單位),則在復(fù)平面上z的共軛復(fù)數(shù)$\overline z$對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求下列函數(shù)的導(dǎo)數(shù):
(1)y=x3-cosx;
(2)y=(3x2+2)(x-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.計(jì)算${0.01^{-\frac{1}{2}}}+{8^{\frac{2}{3}}}+{2^{{{log}_4}5}}$=14+$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.△ABC中,BC=7,AB=3,且$\frac{sinC}{sinB}$=$\frac{3}{5}$.
(1)求AC的長(zhǎng);
(2)求∠A的大;
(3)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在△ABC中,A=60°,B=45°,$b=\sqrt{6}$,則a=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某中學(xué)為調(diào)查來(lái)自城市和農(nóng)村的同齡高中學(xué)生的身高差異,從高三年級(jí)的18歲學(xué)生中隨機(jī)抽取來(lái)自農(nóng)村和城市的學(xué)生各10名,測(cè)量他們的身高,數(shù)據(jù)如下(單位:cm)
農(nóng)村:166,158,170,169,180,171,176,175,162,163
城市:167,183,166,179,173,169,163,171,175,178
(I)根據(jù)抽測(cè)結(jié)果畫(huà)出莖葉圖,并根據(jù)你畫(huà)的莖葉圖對(duì)來(lái)自農(nóng)村的高三學(xué)生與來(lái)自城市的高三學(xué)生的身高作比較,寫(xiě)出你的結(jié)論(不寫(xiě)過(guò)程,只寫(xiě)結(jié)論).
(II)若將樣本頻率視為總體的概率,現(xiàn)從樣本中來(lái)自農(nóng)村的身高不低于170的高三學(xué)生中隨機(jī)抽取3名同學(xué),求其中恰有兩名同學(xué)的身高低于175的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案