10.計(jì)算${0.01^{-\frac{1}{2}}}+{8^{\frac{2}{3}}}+{2^{{{log}_4}5}}$=14+$\sqrt{5}$.

分析 利用指數(shù)與對(duì)數(shù)的運(yùn)算法則即可得出.

解答 解:原式=$\frac{1}{0.1}$+${2}^{3×\frac{2}{3}}$+${2}^{lo{g}_{2}\sqrt{5}}$
=10+4+$\sqrt{5}$
=14+$\sqrt{5}$.
故答案為:14+$\sqrt{5}$.

點(diǎn)評(píng) 本題考查了指數(shù)與對(duì)數(shù)的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列命題中,真命題是( 。
A.?x∈R,2x>x2B.?x∈R,ex<0
C.若a>b,c>d,則a-c>b-dD.ac2>bc2是a>b的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若x,y∈R,且滿足$\left\{\begin{array}{l}x≥1\\ x-2y+3≥0\\ y≥x\end{array}$則z=2x+3y的最大值等于15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知曲線C的極坐標(biāo)方程為${ρ^2}=\frac{36}{{4{{cos}^2}θ+9{{sin}^2}θ}}$,若P(x,y)是曲線C上的一個(gè)動(dòng)點(diǎn),則3x+4y的最大值為$\sqrt{145}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.過(2,0)點(diǎn)作圓(x-1)2+(y-1)2=1的切線,所得切線方程為( 。
A.y=0B.x=1和y=0C.x=2和y=0D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.有兩個(gè)等差數(shù)列2,6,10,…,190及2,8,14,…,200,由這兩個(gè)等差數(shù)列的公共項(xiàng)按從小到大的順序組成一個(gè)新數(shù)列,則這個(gè)新數(shù)列的前10項(xiàng)之和為560.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知等差數(shù)列{an}的前3項(xiàng)和為6,前8項(xiàng)和為-4.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(4-an)•3n,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.學(xué)校藝術(shù)節(jié)對(duì)A,B,C,D四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:甲說:“是C或D作品獲得一等獎(jiǎng)”;乙說:“B作品獲得一等獎(jiǎng)”;丙說:“A,D兩件作品未獲得一等獎(jiǎng)”;丁說:“是C作品獲得一等獎(jiǎng)”.
評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知圓C的圓心與拋物線y2=4x的焦點(diǎn)關(guān)于直線y=x對(duì)稱,直線4x-3y-2=0與圓C相交于A,B兩點(diǎn),且|AB|=6,則圓C的標(biāo)準(zhǔn)方程為x2+(y-1)2=10.

查看答案和解析>>

同步練習(xí)冊(cè)答案