20.求下列函數(shù)的導(dǎo)數(shù):
(1)y=x3-cosx;
(2)y=(3x2+2)(x-5)

分析 (1)(2)利用導(dǎo)數(shù)的運(yùn)算法則即可得出.

解答 解:(1)y′=3x2+sinx,
(2)y′=6x(x-5)+(3x2+2)
=9x2-30x+2.

點(diǎn)評 本題考查了導(dǎo)數(shù)的運(yùn)算法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.($\frac{1}{\sqrt{x}}$-x210的展開式中x5的系數(shù)為210.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C1的中心在原點(diǎn),焦點(diǎn)在y軸上,且焦距為6,橢圓上的點(diǎn)到兩焦點(diǎn)的距離之和為10.
(1)求橢圓C1的標(biāo)準(zhǔn)方程和焦點(diǎn)坐標(biāo);
(2)若雙曲線C2與橢圓C1有相同的焦點(diǎn),且實(shí)軸長是虛軸長的一半,求雙曲線C2的標(biāo)準(zhǔn)方程及其漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=cos(2ωx-\frac{π}{3})-2{cos^2}$ωx+2的圖象的對稱中心到對稱軸的最短距離為$\frac{π}{4}$.
(1)求ω的值和函數(shù)f(x)的圖象的對稱中心、對稱軸方程.
(2)求函數(shù)f(x)在區(qū)間$[{-\frac{π}{12},\frac{π}{2}}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.圓C1:x2+y2+2x+8y-8=0,圓C2:x2+y2-4x-4y-1=0,圓C1與圓C2的公切線有2條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過(2,0)點(diǎn)作圓(x-1)2+(y-1)2=1的切線,所得切線方程為( 。
A.y=0B.x=1和y=0C.x=2和y=0D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知正方形ABCD的邊長為4,E、F分別是AB、AD的中點(diǎn),GC⊥平面ABCD,且GC=2,則點(diǎn)B到平面EFG的距離為$\frac{2\sqrt{11}}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.底面為菱形的直棱柱ABCD-A1B1C1D1中,E、F分別為棱A1B1、A1D1的中點(diǎn).
(Ⅰ)在圖中作一個平面α,使得BD?α,且平面AEF∥α,(不必給出證明過程,只要求作出α與直棱柱ABCD-A1B1C1D1的截面.)
(II)若AB=AA1=2,∠BAD=60°,求平面AEF與平面α的距離d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足:an2-an-an+1+1=0,a1=2
(1)求a2,a3
(2)證明數(shù)列為遞增數(shù)列;
 (3)求證:$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{a_n}$<1.

查看答案和解析>>

同步練習(xí)冊答案