1.已知集合A={1,3,$\sqrt{m}$},B={1,m},A∩B={1,m},則m=( 。
A.0或$\sqrt{3}$B.0或3C.1或3D.1或3或0

分析 由A,B,以及A與B的交集為B,列出關(guān)于m的方程,求出方程的解即可得到m的值.

解答 解:∵集合A={1,3,$\sqrt{m}$},B={1,m},且A∩B={1,m}
∴m=3或m=$\sqrt{m}$,
解得:m=3或m=0或m=1,
由元素的互異性得m=1不合題意,舍去,
則m=3或0.
故選:B.

點(diǎn)評(píng) 本題考查了交集的定義與運(yùn)算問(wèn)題,熟練掌握交集的定義是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,某農(nóng)戶(hù)計(jì)劃在自家后院,背靠院墻用籬笆圍出一塊約8m2的矩形空地用來(lái)養(yǎng)雞,所需籬笆總長(zhǎng)度最小為8m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.證明:函數(shù)y=$\sqrt{2x-{x}^{2}}$滿足關(guān)系式y(tǒng)3y″+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)計(jì)算:27${\;}^{\frac{2}{3}}$-$\sqrt{(3-π)^{2}}$+lg5+lg2;
(2)化簡(jiǎn):tan$\frac{5π}{4}$+sin($\frac{π}{2}$+α)-cos(-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積等于(  )
A.40cm3B.30cm3C.20cm3D.10cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.指數(shù)函數(shù)y=ax(a>0,a≠1)的反函數(shù)圖象過(guò)點(diǎn)(9,2),則a=(  )
A.3B.2C.9D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖程序框圖所示的算法來(lái)自于《九章算術(shù)》,若輸入a的值為16,b的值為24,則執(zhí)行該程序框圖的結(jié)果為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若圓錐底面半徑為2,高為$\sqrt{5}$,則其側(cè)面積為6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱(chēng)中心,且“拐點(diǎn)”就是對(duì)稱(chēng)中心.設(shè)函數(shù)g(x)=2x3-3x2+$\frac{3}{2}$,則g($\frac{1}{100}$)+g($\frac{2}{100}$)+…+g($\frac{99}{100}$)=( 。
A.100B.99C.50D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案