分析 設$\frac{CE}{CB}$=λ(0<λ<1),利用解直角三角形算出EF=2λ百米,再利用EF∥AB算出點D到EF的距離為h=$\frac{\sqrt{3}}{2}$(1-λ)百米,從而得到S△DEF=$\frac{1}{2}$EF•h表示成關于λ的函數式,利用基本不等式求最值即可算出△DEF面積S△DEF的最大值.
解答 解:Rt△ABC中,∠C=90°,AB=2百米,BC=1百米.
∴cosB=$\frac{1}{2}$,可得B=60°,
∵EF∥AB,∴∠CEF=∠B=60°
設$\frac{CE}{CB}$=λ(0<λ<1),則CE=λCB=λ百米,
Rt△CEF中,EF=2CE=2λ百米,C到FE的距離d=$\frac{\sqrt{3}}{2}$CE=$\frac{\sqrt{3}}{2}$λ百米,
∵C到AB的距離為$\frac{\sqrt{3}}{2}$BC=$\frac{\sqrt{3}}{2}$百米,
∴點D到EF的距離為h=$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{3}}{2}$λ=$\frac{\sqrt{3}}{2}$(1-λ)百米
可得S△DEF=$\frac{1}{2}$EF•h=$\frac{\sqrt{3}}{2}$λ(1-λ)百米2
∵λ(1-λ)≤$\frac{1}{4}$[λ+(1-λ)]2=$\frac{1}{4}$,當且僅當λ=$\frac{1}{2}$時等號成立
∴當λ=$\frac{1}{2}$時,即E為AB中點時,S△DEF的最大值為$\frac{\sqrt{3}}{8}$百米2.
點評 本題在特殊直角三角形中求三角形面積的最值,著重考查了解直角三角形、正弦定理和三角恒等變換等知識,考查了在實際問題中建立三角函數模型能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{AB}{DE}=\frac{AD}{BE}$ | B. | $\frac{BC}{AC}=\frac{EF}{DF}$ | C. | $\frac{AC}{AB}=\frac{DF}{EF}$ | D. | $\frac{AB}{EF}=\frac{DE}{BC}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ①或② | B. | ②或③ | C. | ③或④ | D. | ④或① |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com