20.若sin(${\frac{π}{6}$-α})=$\frac{1}{3}$,則2cos2(${\frac{π}{6}$+$\frac{α}{2}$)-1等于( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.-$\frac{7}{9}$D.-$\frac{17}{81}$

分析 利用二倍角公式化解,即可得答案

解答 解:由$sin({\frac{π}{6}-α})=\frac{1}{3}$,
則$2{cos^2}({\frac{π}{6}+\frac{α}{2}})-1=cos({\frac{π}{3}+α})=sin[{\frac{π}{2}-({\frac{π}{3}+α})}]$=$sin({\frac{π}{6}-α})=\frac{1}{3}$.
故選:A.

點評 本題考査三角恒等變換和誘導公式的運用.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知在直角坐標系中(O為坐標原點),$\overrightarrow{OA}$=(2,5),$\overrightarrow{OB}$=(3,1),$\overrightarrow{OC}$=(x,3).
(1)若A、B、C共線,求x的值;
(2)當x=6時,直線OC上存在點M,且$\overrightarrow{MA}$⊥$\overrightarrow{MB}$,求點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x-1|,x∈(-∞,2)}\\{\frac{1}{2}f(x-2),x∈[2,+∞)}\end{array}\right.$,則函數(shù)F(x)=xf(x)-1的零點的個數(shù)為( 。
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.f(x)=ex-ax(a>1),試討論f(x)在[0,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知雙曲線C與x2-2y2=2有公共漸近線,且過點M(2,-2),求C的方程,并寫出其離心率與漸近線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在(2x+a)5的展開式中,含x4項的系數(shù)等于160,則${∫}_{0}^{a}$(ex+2x)dx等于( 。
A.e2+3B.e2+4C.e+1D.e+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=$\sqrt{3}$sin(π-2x)-2cos2x.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[$\frac{π}{4}$,$\frac{3π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知集合{φ|f(x)=sin[(x-2φ)π]+cos[(x-2φ)π]為奇函數(shù),且|logaφ|<1}的子集個數(shù)為4,則a的取值范圍為($\frac{8}{13},\frac{5}{8}$)∪($\frac{8}{5},\frac{13}{8}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R,a≠0),f(-2)=f(0)=0,f(x)的最小值為-1.
(1)求函數(shù)f(x)的解析式;
(2)設函數(shù)h(x)=log2[n-f(x)],若此函數(shù)在定義域范圍內不存在零點,求實數(shù)n的取值范圍.

查看答案和解析>>

同步練習冊答案