4.定義在R上的偶函數(shù)f(x),滿(mǎn)足f(x+1)=-f(x),且f(x)在[-1,0]上是增函數(shù),
①f(x)為周期函數(shù);      
②f(x)的圖象關(guān)于x=1對(duì)稱(chēng);      
③f(x)在[0,1]上為增函數(shù);
④f(x)在[1,2]上為減函數(shù);   
⑤f(2)=f(0).
則上述說(shuō)法正確的有①②⑤.

分析 由f(x)定義在R上的偶函數(shù),則必有f(x)=f(-x),又有關(guān)系式f(x+1)=-f(x),兩個(gè)式子綜合起來(lái)就可以求得周期了.再根據(jù)周期函數(shù)的性質(zhì),且在[-1,0]上是增函數(shù),推出單調(diào)區(qū)間即可.

解答 解:∵定義在R上的偶函數(shù)f(x)滿(mǎn)足f(x+1)=-f(x),
∴f(x)=-f(x+1)=-[-f(x+1+1)]=f(x+2),
∴f(x)是周期為2的函數(shù),則①正確.
又∵f(x+2)=f(x)=f(-x),
∴y=f(x)的圖象關(guān)于x=1對(duì)稱(chēng),②正確,
又∵f(x)為偶函數(shù)且在[-1,0]上是增函數(shù),
∴f(x)在[0,1]上是減函數(shù),
又∵對(duì)稱(chēng)軸為x=1.
∴f(x)在[1,2]上為增函數(shù),f(2)=f(0),
故③④錯(cuò)誤,⑤正確.
故答案應(yīng)為①②⑤.

點(diǎn)評(píng) 本題考查了偶函數(shù)及周期函數(shù)的性質(zhì)問(wèn)題,其中涉及到函數(shù)單調(diào)性問(wèn)題.對(duì)于偶函數(shù)和周期函數(shù)是非常重要的考點(diǎn),需要理解記憶,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知tanα=3,則$\frac{sin2α-1}{{{{cos}^2}α+2{{sin}^2}α}}$=( 。
A.$-\frac{2}{17}$B.$\frac{2}{17}$C.$\frac{4}{19}$D.$-\frac{4}{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)點(diǎn)A(-2,0)和B(0,3),在直線(xiàn)l:x-y+1=0上找一點(diǎn)P,使|PA|+|PB|的取值最小,則這個(gè)最小值為$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,a3=$\frac{1}{2}$•S3=6.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求和:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知f(x)=$\left\{\begin{array}{l}{0,x>0}\\{-1,x=0}\\{2x-3,x<0}\end{array}\right.$,則f[f(0)]=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在等腰梯形ABCD中,AB=2CD=2,∠DAB=60°,E是AB的中點(diǎn),將△ADE與△BEC分別沿ED,EC向上折起,使A,B重合于點(diǎn)P,若三棱錐P-CDE的各個(gè)頂點(diǎn)在同一球面上,則該球的表面積為(  )
A.$\frac{\sqrt{6}}{4}$B.$\frac{\sqrt{6}π}{2}$C.$\frac{\sqrt{6}π}{8}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.不等式組$\left\{\begin{array}{l}x>m\\ x<4\end{array}\right.$的整數(shù)解有4個(gè),則m的取值范圍是(  )
A.-1≤m<0B.-1<m≤0C.-1≤m≤0D.-1<m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)的定義域?yàn)閇a,b],在同一坐標(biāo)系下,函數(shù)y=f(x)的圖象與直線(xiàn)x=1的交點(diǎn)個(gè)數(shù)為0或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.當(dāng)實(shí)數(shù)m為何值時(shí),z=lg(m2-2m-2)+(m2+3m+2)i
(1)為實(shí)數(shù)       (2)為虛數(shù)     (3)對(duì)應(yīng)的點(diǎn)在復(fù)平面的第二象限.

查看答案和解析>>

同步練習(xí)冊(cè)答案