1.如圖,三角形PCD所在的平面與等腰梯形ABCD所在的平面垂直,AB=AD=$\frac{1}{2}$CD,AB∥CD,CP⊥CD,M為PD的中點.
(1)求證:AM∥平面PBC;
(2)求證:平面BDP⊥平面PBC.

分析 (1)取PC的中點N,連結(jié)MN,BN,則四邊形ABNM是平行四邊形,得出AM∥BN,故而AM∥平面PBC;
(2)由面面垂直得PC⊥BD,由等腰梯形的性質(zhì)可得BD⊥BC,故而BD⊥平面PBC,于是平面BDP⊥平面PBC.

解答 證明:(1)取PC的中點N,連結(jié)MN,BN,
則MN$\stackrel{∥}{=}$$\frac{1}{2}$CD,又AB$\stackrel{∥}{=}$$\frac{1}{2}$CD,
∴四邊形ABNM是平行四邊形,
∴AM∥BN,又AM?平面PBC,BN?平面PBC,
∴AM∥平面PBC.
(2)∵平面ABCD⊥平面PCD,平面ABCD∩平面PCD=CD,CD⊥PC,PC?平面PCD,
∴PC⊥平面ABCD,∵BD?平面ABCD,
∴BD⊥PC,
∵四邊形ABCD是等腰梯形,AD=AB=BC=$\frac{1}{2}$CD,
則cos∠BCD=$\frac{\frac{1}{2}(CD-AB)}{BC}$=$\frac{1}{2}$,即∠BCD=60°,
∴BD2=BC2+CD2-BC•CD=3BC2,∴BC2+BD2=CD2,
∴BD⊥BC,
又BC∩PC=C,BC?平面PBC,PC?平面PBC,
∴BD⊥平面PBC,又BD?平面PBD,
∴平面PBD⊥平面PBC.

點評 本題考查了線面平行的判定,面面垂直的性質(zhì)與判定,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知F1、F2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,離心率為$\frac{\sqrt{3}}{3}$,點P在橢圓C上,且點P在x軸上的正投影恰為F1,在y軸上的正投影為點(0,$\frac{2\sqrt{3}}{3}$).
(1)求橢圓C的方程;
(2)過點F1且傾斜角為$\frac{5π}{6}$的直線l與橢圓C交于A,B兩點,過點P且平行于直線l的直線交橢圓C于另一點Q,求證:四邊形PABQ為平行四邊形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.變量x,y滿足約束條件$\left\{\begin{array}{l}x-y≤0\\ y≤10-2x\\ x-1≥0\end{array}$,則z=2x-y的最小值為-6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,橢圓E的左右頂點分別為A、B,左右焦點分別為F1、F2,|AB|=4,|F1F2|=2$\sqrt{3}$,直線l:y=kx+m(k>0)交橢圓于C、D兩點,與線段F1F2及橢圓短軸分別交于M、N兩點(M、N不重合),且|CM|=|DN|.
(Ⅰ)求橢圓E的離心率;
(Ⅱ)若CD的垂直平分線過點(-1,0),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知直線l1:mx+y+1=0,l2:(m-3)x+2y-1=0,則“m=1”是“l(fā)1⊥l2”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$,目標函數(shù)z=ax+by(a>0,b>0)的最大值為M,若M的取值范圍是[1,2],則點M(a,b)所經(jīng)過的區(qū)域面積為(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖是一個算法流程圖,則輸出的x值為( 。
A.95B.47C.23D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知i為虛數(shù)單位,z(1-i)=1+i,則復數(shù)z的共軛復數(shù)為(  )
A.-iB.iC.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.為了政府對過熱的房地產(chǎn)市場進行調(diào)控決策,統(tǒng)計部門對城市人和農(nóng)村人進行了買房的心理預期調(diào)研,用簡單隨機抽樣的方法抽取110人進行統(tǒng)計,得到如下列聯(lián)表:
買房不買房糾結(jié)
城市人515
農(nóng)村人2010
已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.
(1)分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);
(2)用獨立性檢驗的思想方法說明在這三種買房的心理預期中哪一種與城鄉(xiāng)有關(guān)?
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(b+d)}$.
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.89710.828

查看答案和解析>>

同步練習冊答案