1.已知圓C1:x2+y2+4x-4y-3=0,動點P在圓C2:x2+y2-4x-12=0上,則△PC1C2面積的最大值為(  )
A.2$\sqrt{5}$B.4$\sqrt{5}$C.8$\sqrt{5}$D.20

分析 圓C1:x2+y2+4x-4y-3=0,即(x+2)2+(y-2)2=11,圓心為(-2,2),C2:x2+y2-4x-12=0,即(x-2)2+y2=16,圓心為(2,0),半徑為4,求出|C1C2|,即可求出△PC1C2的面積的最大值.

解答 解:圓C1:x2+y2+4x-4y-3=0,即(x+2)2+(y-2)2=11,圓心為(-2,2),
C2:x2+y2-4x-12=0,即(x-2)2+y2=16,圓心為(2,0),半徑為4,
∴|C1C2|=$\sqrt{16+4}$=2$\sqrt{5}$,
∴△PC1C2的面積的最大值為$\frac{1}{2}×2\sqrt{5}×4$=4$\sqrt{5}$,
故選:B.

點評 本題考查圓的方程,考查三角形面積的計算,將圓的方程化為標準方程是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.若m∈($\frac{1}{10}$,1),a=lgm,b=lgm2,c=lg3m,則( 。
A.a<b<cB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.cos10°sin70°-cos80°sin20°=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若復數(shù)z滿足z+i=$\frac{2+i}{i}$,其中i為虛數(shù)單位,則|z|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設(shè)|θ|<$\frac{π}{2}$,n為正整數(shù),數(shù)列{an}的通項公式an=sin$\frac{nπ}{2}$tannθ,其前n項和為Sn
(1)求證:當n為偶函數(shù)時,an=0;當n為奇函數(shù)時,an=(-1)${\;}^{\frac{n-1}{2}}$tannθ;
(2)求證:對任何正整數(shù)n,S2n=$\frac{1}{2}$sin2θ•[1+(-1)n+1tan2nθ].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合A={x|2x-x2≥0},B={y|y=2x,x∈A},則A∩B=( 。
A.[0,1)B.[1,2]C.(2,4]D.[2,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)數(shù)列{an}的前n項和為Sn,滿足a1=1,2Sn=an+1-1.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)bn=log3an+1,數(shù)列{bn}的前n項和為Tn,求數(shù)列{$\frac{1}{{T}_{n}}$}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知過原點的動直線與圓${C_1}:{x^2}+{y^2}-6x+5=0$相交于不同的兩點A,B.
(1)求線段AB的中點M的軌跡C的方程;
(2)是否存在實數(shù),使得直線L:y=k(x-4)與曲線C只有一個交點:若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.為了解適齡公務員對開放生育二胎政策的態(tài)度,某部門隨機調(diào)查了90位三十歲到四十歲的公務員,得到如下列聯(lián)表,因不慎丟失部分數(shù)據(jù).
(1))完成表格數(shù)據(jù),判斷是否有99%以上的把握認為“生二胎意愿與性別有關(guān)”并說明理由;
(2)已知15位有意愿生二胎的女性公務員中有兩位來自省婦聯(lián),該部門打算從這15位有意愿生二胎的女性公務員中隨機邀請兩位來參加座談,設(shè)邀請的2人中來自省婦聯(lián)的人數(shù)為X,求X的分布列及數(shù)學期望E(X).
男性公務員女性公務員總計
有意愿生二胎1545
無意愿生二胎25
總計
P(k2≥k00.0500.0100.001
k03.8416.63510.828
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步練習冊答案