6.已知橢圓C1:$\frac{x^2}{4}$+y2=1,拋物線C2:y2=ax(a>0),點T為橢圓C1的右頂點,設(shè)橢圓C1與拋物線C2交于點A,B.
(1)求$\overrightarrow{TA}$•$\overrightarrow{TB}$的最小值,并求此時拋物線C2的方程;
(2)設(shè)點M是橢圓C1上異于A,B的任意一點,且直線MA,MB分別與x軸交于點P,Q,O為坐標原點,求證:|OP|•|OQ|為定值.

分析 (1)設(shè)A(x0,y0),則B(x0,-y0),求出$\overrightarrow{TA}$,$\overrightarrow{TB}$,推出向量的數(shù)量積的表達式,利用二次函數(shù)求解最小值,然后求出A的坐標,推出拋物線方程.
(2)設(shè)M(x1,y1),由A(x0,y0),求出P的坐標,Q的坐標,求出|OP|•|OQ|的表達式,利用M(x1,y1),A(x0,y0)均在橢圓上,化簡求解即可得到|OP|•|OQ|=4.

解答 解:(1)由拋物線與橢圓關(guān)于x軸對稱可得:M,N關(guān)于x軸對稱.
設(shè)A(x0,y0),則B(x0,-y0),且有$\frac{x_0^2}{4}+y_0^2=1$
由T(2,0)可得:$\overrightarrow{TA}=({{x_0}-2,{y_0}}),\overrightarrow{TB}=({{x_0}-2,-{y_0}})$,
∴$\overrightarrow{TA}•\overrightarrow{TB}={({{x_0}-2})^2}-y_0^2={({{x_0}-2})^2}+\frac{x_0^2}{4}-1$=$\frac{5}{4}x_0^2-4{x_0}+3=\frac{5}{4}{({{x_0}-\frac{8}{5}})^2}-\frac{1}{5}$…(3分)
因為A在右半橢圓上(非長軸頂點)∴0<x0<2∴${x_0}=\frac{8}{5}$時,
${({\overrightarrow{TA}•\overrightarrow{TB}})_{min}}=-\frac{1}{5}$,將${x_0}=\frac{8}{5}$代入可得${y_0}=\frac{3}{5}$
即A($\frac{8}{5}$,$\frac{3}{5}$),代入到拋物線方程可得:a=$\frac{9}{40}$,
所以此時拋物線C2的方程為${y^2}=\frac{9}{40}x$.…(5分)
(2)設(shè)M(x1,y1),由A(x0,y0)可得:${k_{MA}}=\frac{{{y_1}-{y_0}}}{{{x_1}-{x_0}}}$
∵MA的方程為:y-y1=$\frac{{y}_{1}-{y}_{0}}{{x}_{1}-{x}_{0}}(x-{x}_{1})$
令y=0,可解得:${x_P}=\frac{{{x_0}{y_1}-{x_1}{y_0}}}{{{y_1}-{y_0}}}$
同理可解得MB與x軸的交點Q的橫坐標${x_Q}=\frac{{{x_0}{y_1}+{x_1}{y_0}}}{{{y_1}+{y_0}}}$…(7分)
所以$|{OP}|•|{OQ}|=|{{x_P}{x_Q}}|=|{\frac{{{x_0}{y_1}-{x_1}{y_0}}}{{{y_1}-{y_0}}}•\frac{{{x_0}{y_1}+{x_1}{y_0}}}{{{y_1}+{y_0}}}}|=|{\frac{x_0^2y_1^2-x_1^2y_0^2}{y_1^2-y_0^2}}|$①
因為M(x1,y1),A(x0,y0)均在橢圓上
∴$\left\{\begin{array}{l}\frac{x_0^2}{4}+y_0^2=1\\ \frac{x_1^2}{4}+y_1^2=1\end{array}\right.⇒\left\{\begin{array}{l}x_0^2=4-4y_0^2\\ x_1^2=4-4y_1^2\end{array}\right.$,代入到①可得:…(10分)$|{OP}|•|{OQ}|=|{\frac{x_0^2y_1^2-x_1^2y_0^2}{y_1^2-y_0^2}}|=|{\frac{{({4-4y_0^2})y_1^2-({4-4y_1^2})y_0^2}}{y_1^2-y_0^2}}|=|{\frac{4y_1^2-4y_0^2}{y_1^2-y_0^2}}|=4$
所以|OP|•|OQ|=4,即為定值…(12分)

點評 本題考查拋物線的求法,數(shù)量積的應(yīng)用,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)=2x2-lnx的遞增區(qū)間是(  )
A.(-∞,-$\frac{1}{2}$)及(0,$\frac{1}{2}$)B.(-$\frac{1}{2}$,0)及($\frac{1}{2}$,+∞)C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)f(x)=x3-12x在區(qū)間[-4,4]上的最小值是( 。
A.-9B.-16C.-12D.-11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,則下面判斷正確的是( 。
A.在區(qū)間(1,3)內(nèi)f(x)是減函數(shù)B.當x=1時,f(x)取到極大值
C.在(4,5)內(nèi)f(x)是增函數(shù)D.當x=2時,f(x)取到極小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=|2x+1|+|2x-3|.
(I)若?x0∈R,使得不等式f(x0)≤m成立,求實數(shù)m的最小值M
(Ⅱ)在(I)的條件下,若正數(shù)a,b滿足3a+b=M,證明:$\frac{3}$+$\frac{1}{a}$≥3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.極坐標系中,曲線C1:ρ=2(sinθ+cosθ)與曲線C2:ρ=1交于點 A(ρ1,θ1),B(ρ2,θ2),其中θ1,θ2∈[-π,π).
(I)求ρ12與θ12的值;
(II)求極點O與點A,B組成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=-x3+6ax2-9a2x+3,0<a<1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)記函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若x∈[1-a,1+a]時,恒有|f′(x)|≤3a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在平面直角坐標系xOy中,圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosφ}\\{y=2sinφ}\end{array}}$(φ為參數(shù)),直線l過點(0,2)且傾斜角為$\frac{π}{3}$.
(Ⅰ)求圓C的普通方程及直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與圓C交于A,B兩點,求弦|AB|的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.三棱錐P-ABC中,PA⊥平面ABC,PA=3,AC=4,PB=PC=BC.
(1)求二面角P-BC-A的大小
(2)求二面角A-PC-B的大。

查看答案和解析>>

同步練習冊答案