A. | 30° | B. | 45° | C. | 60° | D. | 90° |
分析 以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法能求出異面直線B1C與EF所成的角的大。
解答 解:以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,
設正方體ABCD-A1B1C1D1中棱長為2,
則E(2,1,0),F(xiàn)(1,0,0),B1(2,2,2),C(0,2,0),
$\overrightarrow{{B}_{1}C}$=(-2,0,-2),$\overrightarrow{EF}$=(-1,-1,0),
設異面直線B1C與EF所成的角為θ,
則cosθ=$\frac{|\overrightarrow{{B}_{1}C}•\overrightarrow{EF}|}{|\overrightarrow{{B}_{1}C}|•|\overrightarrow{EF}|}$=$\frac{2}{\sqrt{8}•\sqrt{2}}$=$\frac{1}{2}$,
∴θ=60°.
故選:C.
點評 本題考查異面直線所成角的求法,涉及到正方體的結構特征、空間向量等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2n-1-2 | B. | 2n-2 | C. | 2n-1-2n | D. | -2n-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 圓錐所有的軸截面是全等的等腰三角形 | |
B. | 圓柱的軸截面是過母線的截面中面積最大的一個 | |
C. | 圓錐的軸截面是所有過頂點的界面中面積最大的一個 | |
D. | 當球心到平面的距離小于球面半徑時,球面與平面的交線總是一個圓 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com