9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$,則f[f(3)]=2.

分析 根據(jù)函數(shù)f(x)是分段函數(shù),計(jì)算f(3)的值,再求f[f(3)]的值.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$,
∴f(3)=f(2)=f(1)=21=2,
∴f[f(3)]=f(2)=f(1)=2.
故答案為:2.

點(diǎn)評(píng) 本題考查了根據(jù)分段函數(shù)的解析式求對(duì)應(yīng)函數(shù)值的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知x,y滿足約束條件$\left\{{\begin{array}{l}{x≤-1}\\{x-y≥-2}\\{x+y+1≥0}\end{array}}\right.$,則目標(biāo)函數(shù)z=3x+y的取值范圍為( 。
A.[-4,-2]B.[-4,+∞)C.[-3,+∞)D.[-3,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=lnx-mx,x∈(0,+∞),m∈R.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若對(duì)于?x∈[1,+∞),f(x)≤-$\frac{m}{x}$恒成立,求正實(shí)數(shù)m的取值范圍;
(Ⅲ)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2,求證:x1•x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=ex+a•e-x+2(a∈R,e為自然對(duì)數(shù)的底數(shù)),若y=f(x)與y=f(f(x))的值域相同,則a的取值范圍是(  )
A.a<0B.a≤-1C.0<a≤4D.a<0或0<a≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別作它的兩條漸近線的平行線,若這4條直線所圍成的四邊形的周長(zhǎng)為8b,則該雙曲線的漸近線方程為( 。
A.y=±xB.y=±$\sqrt{2}$xC.y=±$\sqrt{3}$xD.y=±2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在一次愛(ài)心捐款活動(dòng)中,小李為了了解捐款數(shù)額是否和居民自身的經(jīng)濟(jì)收入有關(guān),隨機(jī)調(diào)查了某地區(qū)的100個(gè)捐款居民每月平均的經(jīng)濟(jì)收入.在捐款超過(guò)100元的居民中,每月平均的經(jīng)濟(jì)收入沒(méi)有達(dá)到2000元的有60個(gè),達(dá)到2000元的有20個(gè);在捐款不超過(guò)100元的居民中,每月平均的經(jīng)濟(jì)收入沒(méi)有達(dá)到2000元的有10個(gè).
(Ⅰ)在下圖表格空白處填寫(xiě)正確數(shù)字,并說(shuō)明是否有95%以上的把握認(rèn)為捐款數(shù)額是否超過(guò)100元和居民每月平均的經(jīng)濟(jì)收入是否達(dá)到2000元有關(guān)?
(Ⅱ)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量居民中,采用隨機(jī)抽樣方法每次抽取1個(gè)居民,共抽取3次,記被抽取的3個(gè)居民中經(jīng)濟(jì)收入達(dá)到2000元的人數(shù)為X,求P(X=2)和期望EX的值.
每月平均經(jīng)濟(jì)收入達(dá)到2000元每月平均經(jīng)濟(jì)收入沒(méi)有達(dá)到2000元合計(jì)
捐款超過(guò)
100元
捐款不超
過(guò)100元
合計(jì)


數(shù)
據(jù)
 當(dāng)x2≤2.706時(shí),無(wú)充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為兩變量無(wú)關(guān)聯(lián);
 當(dāng)x2>2.706時(shí),有90%的把握判定變量A,B有關(guān)聯(lián);
 當(dāng)x2>3.841時(shí),有95%的把握判定變量A,B有關(guān)聯(lián);
 當(dāng)x2>6.635時(shí),有99%的把握判定變量A,B有關(guān)聯(lián).
附:X2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知i為虛數(shù)單位,m∈R,復(fù)數(shù)z=(-m2+2m+8)+(m2-8m)i,若z為負(fù)實(shí)數(shù),則m的取值集合為(  )
A.{0}B.{8}C.(-2,4)D.(-4,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知數(shù)列{an}的前n項(xiàng)和${S_n}=-{a_n}-{(\frac{1}{2})^{n-1}}+2$(n∈N*),則數(shù)列{an}的通項(xiàng)公式an=$\frac{n}{{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)集合U={0,1,2,3,4,5},A={1,2,3},B={x∈Z|x2-5x+4≥0},則A∩(∁UB)=( 。
A.{1,2,3}B.{1,2}C.{2,3}D.{2}

查看答案和解析>>

同步練習(xí)冊(cè)答案