4.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別作它的兩條漸近線的平行線,若這4條直線所圍成的四邊形的周長為8b,則該雙曲線的漸近線方程為( 。
A.y=±xB.y=±$\sqrt{2}$xC.y=±$\sqrt{3}$xD.y=±2x

分析 過右焦點,與一條漸近線平行的直線方程為bx-ay-bc=0,令x=0,y=$\frac{bc}{a}$,利用這4條直線所圍成的四邊形的周長為8b,建立方程,即可得出結論.

解答 解:過右焦點,與一條漸近線平行的直線方程為bx-ay-bc=0,
令x=0,y=$\frac{bc}{a}$,
∵這4條直線所圍成的四邊形的周長為8b,
∴$2b=\sqrt{\frac{^{2}{c}^{2}}{{a}^{2}}+{c}^{2}}$,∴a=b,
∴該雙曲線的漸近線方程為y=±x,
故選A.

點評 本題考查雙曲線的方程與性質(zhì),考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.如圖所示,正三角形ABC所在平面與梯形BCDE所在平面垂直,BE∥CD,BE=2CD=4,BE⊥BC,F(xiàn)為棱AE的中點.
(1)求證:DF∥平面ABC;
(2)求證:DF⊥平面ABE;
(3)若直線AD與平面BCDE所成角的正切值為$\frac{{\sqrt{15}}}{5}$,求二面角B-CF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=|x+1-2a|+|x-a2|,g(x)=x2-2x-4+$\frac{4}{(x-1)^{2}}$
(Ⅰ)若f(2a2-1)>4|a-1|,求實數(shù)a的取值范圍;
(Ⅱ)若存在實數(shù)x,y,使f(x)+g(y)≤0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=x2(2x-2-x),則不等式f(2x+1)+f(1)≥0的解集是{x|x≥-1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知圓C:(x-1)2+(y-4)2=10和點M(5,t),若圓C上存在兩點A,B,使得MA⊥MB,則實數(shù)t的取值范圍為(  )
A.[-2,6]B.[-3,5]C.[2,6]D.[3,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$,則f[f(3)]=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知x,y∈R,i為虛數(shù)單位,$x+(y-2)i=\frac{2}{1+i}$,則x+y=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若θ是第二象限角且sinθ=$\frac{12}{13}$,則$tan(θ+\frac{π}{4})$=( 。
A.$-\frac{17}{7}$B.$-\frac{7}{17}$C.$\frac{17}{7}$D.$\frac{7}{17}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若函數(shù)y=f(x)的圖象上存在兩個點A,B關于原點對稱,則對稱點(A,B)為y=f(x)的“孿生點對”,點對(A,B)與(B,A)可看作同一個“孿生點對”,若函數(shù)f(x)=$\left\{\begin{array}{l}{2,x<0}\\{-{x}^{3}+6{x}^{2}-9x+2-a,x≥0}\end{array}\right.$恰好有兩個“孿生點對”,則實數(shù)a的值為(  )
A.4B.2C.1D.0

查看答案和解析>>

同步練習冊答案