【題目】已知數(shù)列,滿足(…).
(1)若,求的值;
(2)若且,則數(shù)列中第幾項(xiàng)最小?請(qǐng)說(shuō)明理由;
(3)若(n=1,2,3,…),求證:“數(shù)列為等差數(shù)列”的充分必要條件是“數(shù)列為等差數(shù)列且(n=1,2,3,…)”.
【答案】(1)(2)第8項(xiàng)最小,理由見(jiàn)解析(3)證明見(jiàn)解析
【解析】
(1)由可判斷是等差數(shù)列,則,進(jìn)而利用等差數(shù)列性質(zhì)求解即可;
(2)法一:利用數(shù)列的增減性進(jìn)行判斷即可;
法二:求出的通項(xiàng)公式,利用均值不等式求最值,即可得到取等條件,進(jìn)而求解;
(3)若數(shù)列為等差數(shù)列,設(shè)其公差為,說(shuō)明數(shù)列為等差數(shù)列,由(…)推出(…);若數(shù)列為等差數(shù)列且(n=1,2,3,…),設(shè)公差為,轉(zhuǎn)化推出(…),說(shuō)明數(shù)列為等差數(shù)列,結(jié)論得證
(1)由,可得,故是等差數(shù)列,
所以
(2)
當(dāng)時(shí),則,解得,
當(dāng)時(shí),則,解得,
故有,
所以數(shù)列中最小,即第8項(xiàng)最小
法二:由,
可知
(當(dāng)且僅當(dāng),即時(shí)取等號(hào))
所以數(shù)列中的第8項(xiàng)最小
(3)證明:若數(shù)列為等差數(shù)列,設(shè)其公差為,
則為常數(shù),
所以數(shù)列為等差數(shù)列,
由(…),
則,故(…)成立,故必要性成立;
若數(shù)列為等差數(shù)列且(n=1,2,3,…),設(shè)的公差為,
則(n=1,2,3,…),
又,故,
又,,故,
所以,故有,所以為常數(shù),
故數(shù)列為等差數(shù)列,故充分性成立,
綜上可得,“數(shù)列為等差數(shù)列”的充分必要條件是“數(shù)列為等差數(shù)列且(n=1,2,3,…)”
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若當(dāng)時(shí)恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)工業(yè)經(jīng)濟(jì)發(fā)展迅速,工業(yè)增加值連年攀升,某研究機(jī)構(gòu)統(tǒng)計(jì)了近十年(從2008年到2017年)的工業(yè)增加值(萬(wàn)億元),如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工業(yè)增加值 | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依據(jù)表格數(shù)據(jù),得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |
(1)根據(jù)散點(diǎn)圖和表中數(shù)據(jù),此研究機(jī)構(gòu)對(duì)工業(yè)增加值(萬(wàn)億元)與年份序號(hào)的回歸方程類型進(jìn)行了擬合實(shí)驗(yàn),研究人員甲采用函數(shù),其擬合指數(shù);研究人員乙采用函數(shù),其擬合指數(shù);研究人員丙采用線性函數(shù),請(qǐng)計(jì)算其擬合指數(shù),并用數(shù)據(jù)說(shuō)明哪位研究人員的函數(shù)類型擬合效果最好.(注:相關(guān)系數(shù)與擬合指數(shù)滿足關(guān)系).
(2)根據(jù)(1)的判斷結(jié)果及統(tǒng)計(jì)值,建立關(guān)于的回歸方程(系數(shù)精確到0.01);
(3)預(yù)測(cè)到哪一年的工業(yè)增加值能突破30萬(wàn)億元大關(guān).
附:樣本 的相關(guān)系數(shù),
,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱的底面是邊長(zhǎng)為的正三角形,側(cè)棱底面為中點(diǎn),分別為上的點(diǎn),且滿足.
(1)求證:平面平面, ;
(2)若三棱錐的體積為,求三棱柱的側(cè)棱長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在貫徹中共中央、國(guó)務(wù)院關(guān)于精準(zhǔn)扶貧政策的過(guò)程中,某單位在某市定點(diǎn)幫扶某村戶貧困戶.為了做到精準(zhǔn)幫扶,工作組對(duì)這戶村民的年收入情況、危舊房情況、患病情況等進(jìn)行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標(biāo).將指標(biāo)按照,,,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認(rèn)定該戶為“絕對(duì)貧困戶”,否則認(rèn)定該戶為“相對(duì)貧困戶”;當(dāng)時(shí),認(rèn)定該戶為“亟待幫住戶”.工作組又對(duì)這戶家庭的受教育水平進(jìn)行評(píng)測(cè),家庭受教育水平記為“良好”與“不好”兩種.
(1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為絕對(duì)貧困戶數(shù)與受教育水平不好有關(guān):
受教育水平良好 | 受教育水平不好 | 總計(jì) | |
絕對(duì)貧困戶 | |||
相對(duì)貧困戶 | |||
總計(jì) |
(2)上級(jí)部門為了調(diào)查這個(gè)村的特困戶分布情況,在貧困指標(biāo)處于的貧困戶中,隨機(jī)選取兩戶,用表示所選兩戶中“亟待幫助戶”的戶數(shù),求的分布列和數(shù)學(xué)期望.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A是圓錐的頂點(diǎn),是圓錐底面的直徑,C是底面圓周上一點(diǎn),,與底面所成角的大小為60°,過(guò)點(diǎn)A作截面,截去部分后的幾何體如圖所示.
(1)求異面直線與所成角的大;
(2)求該幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說(shuō)明理由;
(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)若為定義域上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),是的導(dǎo)函數(shù),且.
(1)求的值,并證明在處取得極值;
(2)證明:在區(qū)間有唯一零點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com