分析 (1)在△CDE中,由已知及余弦定理可得CE2-CE-1=0,進(jìn)而解得CE的值.
(2)設(shè)∠CDE=α,300≤α≤900,在△CDE中,由正弦定理,可求DE=$\frac{\sqrt{3}}{2sin(60°+α)}$,$DF=\frac{{\sqrt{3}}}{2sinα}$,利用三角形面積公式可求S△DEF=$\frac{3\sqrt{3}}{4+8sin(2α-30°)}$,由范圍300≤2α-300≤1500,利用正弦函數(shù)的圖象和性質(zhì)即可得解.
解答 解:(1)在△CDE中,$∠DCE={60^0},CD=1,DE=\sqrt{2}$,
由余弦定理得,DE2=CD2+CE2-2×CD×CE×cos60°,
得CE2-CE-1=0,解得$CE=\frac{{\sqrt{5}+1}}{2}$;
(2)設(shè)∠CDE=α,300≤α≤900,
在△CDE中,由正弦定理,得$\frac{DE}{sin∠DCE}=\frac{DC}{sin∠CED}$,
所以$DE=\frac{{sin{{60}^0}}}{{sin({{{60}^0}+α})}}=\frac{{\sqrt{3}}}{{2sin({{{60}^0}+α})}}$,同理$DF=\frac{{\sqrt{3}}}{2sinα}$,
故${S_{△DEF}}=\frac{1}{2}×DE×DF×sin∠EDF=\frac{{3\sqrt{3}}}{{16sinαsin({{{60}^0}+α})}}=\frac{{3\sqrt{3}}}{{4+8sin({2α-{{30}^0}})}}$,
因?yàn)?00≤α≤900,300≤2α-300≤1500,
所以當(dāng)α=600時(shí),sin(2α-300)的最大值為1,此時(shí)△DEF的面積取到最小值.
即∠CDE=60°時(shí),△DEF的面積的最小值為$\frac{{\sqrt{3}}}{4}$.
點(diǎn)評(píng) 此題考查了正弦、余弦定理,三角形的面積公式,以及同角三角函數(shù)間的基本關(guān)系,正弦函數(shù)的圖象和性質(zhì)的綜合應(yīng)用,熟練掌握定理及公式是解本題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a,b都小于0 | B. | a,b都大于0 | ||
C. | a,b中至少有一個(gè)大于0 | D. | a,b中至少有一個(gè)小于0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({-∞,-\frac{3}{2}})$ | B. | $({-∞,-\frac{3}{2}}]∪({\frac{{3\sqrt{3}}}{8},\frac{3}{2}}]$ | C. | $({-∞,-\frac{3}{2}})∪({\frac{{3\sqrt{3}}}{8},\frac{3}{2}})$ | D. | $[{-\frac{3}{2},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0,1,2} | B. | [0,2] | C. | {0,2} | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a+b>1 | B. | a+b=2 | C. | a2+b2>2 | D. | a+b>2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com