17.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2,則a1等于( 。
A.4B.2C.1D.-2

分析 利用數(shù)列的遞推關(guān)系式,直接求解即可.

解答 解:數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2,n=1時(shí),a1=2a1-2,
解得a1=2.
故選:B.

點(diǎn)評 本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,函數(shù)的特征,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.解不等式:
(1)解不等式:$\frac{3-x}{5+2x}$≤0.
(2)解不等式組$\left\{{\begin{array}{l}{{x^2}-3x<0}\\{\frac{1}{x}≤x}\end{array}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集合A={0,1,2},集合B={x|x=ab,a∈A,b∈A},則集合B的真子集個(gè)數(shù)( 。
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)已知f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α-π)tan(-α+\frac{3}{2}π)}{sin(-α-π)}$.若cos(α-$\frac{3}{2}$π)=$\frac{1}{5}$,α是第三象限角,求f(α);
(2)若α、β為銳角,且cos(α+β)=$\frac{12}{13}$,cos(2α+β)=-$\frac{3}{5}$,求cosα 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知y=f(x)是奇函數(shù),當(dāng)x∈(0,2)時(shí),f(x)=alnx-ax+1,當(dāng)x∈(-2,0)時(shí),函數(shù)f(x)的最小值為1,則a=( 。
A.-2B.2C.±1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)是奇函數(shù)的是(  )
A.y=xB.y=2x2-3C.y=$\sqrt{x}$D.y=x2,x∈[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=$\frac{2x}{x-1}$.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在[2,6]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知A(x,2,-1)、B(6,4,1),且|AB|=2$\sqrt{3}$,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)向量$\overrightarrow{a}$=(cosωx-sinωx,-1),$\overrightarrow$=(2sinωx,-1),其中ω>0,x∈R,已知函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$的最小正周期為4π.
(1)求f(x)的對稱中心;
(2)若sinx0是關(guān)于t的方程2t2-t-1=0的根,且x0∈(-$\frac{π}{2}$,$\frac{π}{2}$),求f(x0)的值.

查看答案和解析>>

同步練習(xí)冊答案